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“An indispensible reference for anyone  
responsible for preserving digital evidence.” 

—Professor Eoghan Casey, University of Lausanne Practical 
Forensic Imaging

Forensic image acquisition is an important 
part of postmortem incident response and evi-
dence collection. Digital forensic investigators 
acquire, preserve, and manage digital evidence 
to support civil and criminal cases; examine 
organizational policy violations; resolve dis-
putes; and analyze cyber attacks.

Practical Forensic Imaging takes a detailed look 
at how to secure and manage digital evidence 
using Linux-based command line tools. This 
essential guide walks you through the entire 
forensic acquisition process and covers a wide 
range of practical scenarios and situations 
 related to the imaging of storage media. 

You’ll learn how to:

🔍 Perform forensic imaging of magnetic 
hard disks, SSDs and flash drives, opti-
cal discs, magnetic tapes, and legacy 
technologies

🔍 Protect attached evidence media from 
accidental modification

🔍 Manage large forensic image files, stor-
age capacity, image format conversion, 
compression, splitting, duplication, secure 
transfer and storage, and secure  disposal

🔍 Preserve and verify evidence integrity 
with cryptographic and piecewise hash-
ing, public key signatures, and RFC-3161 
 timestamping

🔍 Work with newer drive and interface 
tech nologies like NVME, SATA Express, 
4K-native sector drives, SSHDs, SAS,  
UASP/USB3x, and Thunderbolt

🔍 Manage drive security such as ATA pass-
words; encrypted thumb drives; Opal self-
encrypting drives; OS-encrypted drives 
using BitLocker, FileVault, and TrueCrypt; 
and others

🔍 Acquire usable images from more complex 
or challenging situations such as RAID 
systems, virtual machine images, and 
damaged media

With its unique focus on digital forensic acqui-
sition and evidence preservation,  Practical 
Forensic Imaging is a valuable resource for 
experienced digital forensic investigators 
wanting to advance their Linux skills and 
experienced Linux administrators wanting 
to learn digital forensics. This is a must-have 
reference for every digital forensics lab.
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F o r e w o r d

Practical Forensic Imaging is much needed, and comes at 
a most oppor tune time. In recent years, preservation 
of digital evidence has become crucial in corporate 
governance, regulatory compliance, criminal and civil 
actions, and military operations. This trend is not geo-
graphically constrained but applies across the major-
ity of continents, including developing countries. 

Savvy organizations preserve pertinent computer systems when han-
dling human resource complaints, policy violations, and employment termi-
nation. Some organizations even preserve data proactively, particularly for 
regulatory compliance purposes. This book provides scalable solutions that 
can be implemented across an enterprise for reasonable cost.

Most criminal cases involve digital evidence, and responsibility to pre-
serve the data is increasingly falling on small law enforcement agencies 
with limited resources or training. Practical Forensic Imaging is an invaluable 
resource for such agencies, delivering practical solutions to their everyday 
problems.



xviii   Foreword

Civil matters can involve large quantities of data spread across many 
data sources, including computers, servers, removable media, and backup 
tapes. Efficient and effective methods are crucial in such circumstances, 
and this book satisfies these requirements as well.

Given the increasing importance of preserving digital evidence in a 
multitude of contexts, it is critical to use proper preservation processes. 
Weaknesses in the preservation process can create problems in all subse-
quent phases of a digital investigation, whereas evidence that has been pre-
served using forensically sound methods and tools provides the foundation 
to build a solid case.

Furthermore, the growing need to preserve digital evidence increases 
the demand for tools that are dependable, affordable, and adaptable to dif-
ferent environments and use cases. 

Practical Forensic Imaging addresses these requirements by concentrating 
on open source technology. Open source tools have these advantages: high 
transparency, low cost, and potential for adaptability. Transparency enables 
others to evaluate the reliability of open source tools more thoroughly. In 
addition to black box testing using known datasets, the source code can be 
reviewed. 

Reducing the cost of forensic preservation is important both for agen-
cies with limited resources and for organizations that have to deal with 
large quantities of data. 

Being able to adapt open source tools to the needs of a specific environ-
ment is a major benefit. Some organizations integrate open source tools 
and preservation tools into automated processes within their enterprise or 
forensic laboratory, while others deploy these same tools on portable sys-
tems for use in the field. 

There is a steep learning curve associated with all digital forensic pro-
cesses and tools, particularly open source tools. Bruce Nikkel’s extensive 
experience and knowledge is evident in the impressive clarity of the techni-
cal material in this book, making it accessible to novices while interesting to 
experts.

Starting with the theory and core requirements of forensic imaging, this 
book proceeds to delve into the technical aspects of acquiring forensic images 
using open source tools. The use of SquashFS is simple but quite clever and 
novel, providing a practical open source solution to a core aspect of forensic 
imaging. The book closes with discussion of the important steps of managing 
forensic images and preparing them for forensic examination. 

Practical Forensic Imaging is an indispensable reference for anyone who 
is responsible for preserving digital evidence, including corporations, law 
enforcement, and counter-terrorism organizations. 

Eoghan Casey, PhD
Professor in Cybercrime and Digital Investigations
School of Criminal Sciences
Faculty of Law, Criminal Sciences and Public Administration
University of Lausanne, Switzerland
August 2016



INTRODUCTION

Welcome to Practical Forensic Imaging: Securing Digital
Evidence with Linux Tools. This book covers a variety of
command line techniques for acquiring and manag-
ing disk images for digital evidence. Acquiring disk
images is the first step in preserving digital forensic
evidence in preparation for postmortem examination
and analysis.

Why I Wrote This Book

Many digital forensics books are available on the market today. But the
importance of forensic acquisition and evidence preservation tends to
receive minimal attention. Often, the topic is only briefly covered in
smaller chapters or subsections of a larger book. I thought that the topic
of acquisition and evidence preservation was large enough to warrant its
own book, and this book addresses this gap in the literature.

Another motivating factor to write this book was my desire to give back
to the community in some way. After working professionally in a digital
forensics lab for more than a decade and regularly using open source tools



for various tasks (in addition to other commercial tools), I wanted to provide
an additional resource for my colleagues and other professionals.

A third motivating factor was the increasing importance of preserving
forensic evidence in the private sector. Investigating misconduct, fraud,
malware, cyber attacks, and other abuse is becoming more common across
private industry. But emphasis on the steps needed to acquire and pre-
serve evidence is often lacking. Law enforcement agencies require properly
acquired and preserved evidence to prosecute criminals. Civil cases involv-
ing e-discovery might require the sound acquisition and preservation of disk
images. Large organizations with internal teams managing human resources
disputes, policy violations, and whistle-blowing incidents can also benefit
from following accepted procedures for collecting and preserving digital
evidence.

How This Book Is Different
The book is a technical procedural guide. It explains the use of Linux as a
platform for performing computer forensics, in particular, forensic image
acquisition and evidence preservation of storage media. I include examples
that demonstrate well-known forensic methods using free or open source
computer forensic tools for acquiring a wide range of target media.

Unlike Linux forensic books covering a broad range of application and
OS analysis topics, this book focuses on a single specific area within com-
puter forensics: forensic acquisition, also known as forensic imaging, of storage
media. This includes the preparation, acquisition, preservation, and man-
agement of digital evidence from various types of storage media. The sound
acquisition of storage media is precisely what makes this process “forensic.”

In addition to covering open source tools, this book includes examples
of several proprietary command line tools that are free to use but not open
source.

I discuss some newer hardware topics that have not yet been incorpo-
rated into other forensic books. For example, NVME and SATA Express,
4K-native sector drives, Hybrid SSDs, SAS, UASP/USB3x, Thunderbolt, and
more. Some of these are straightforward to manage in a digital forensics
context; others are more challenging.

I also introduce a new forensic technique that uses the SquashFS com-
pressed filesystem as a simple and practical forensic evidence container.
With this book, I provide the sfsimage shell script, which can preserve evi-
dence into SquashFS forensic containers.

Why Use the Command Line?
Why is a book based on the command line even useful or relevant today?
The computer command line has been around since the teletype days of
the 1960s, making it more than half a century old. In computing, although
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age is sometimes viewed as a sign of obsolescence, it can also be a sign
of maturity and dependability, which is the case with the Linux/Unix
command line. Even Microsoft has recognized the value and power of
the command line by introducing and promoting PowerShell as an alter-
native to the aging DOS prompt.

There are many reasons why the command line has retained its popular-
ity over the years and continues to be relevant for the topics I discuss in this
book. Here are some examples:

• Easier scripting and automation possibilities: A GUI interface is
designed for human use, whereas the command line can be used by
either human or machine. This makes the command line particularly
useful for scripting and automating work.

• Better understanding of how things work under the hood: Graphical
tools are often simply frontends to command line tools. Learning com-
mand line tools helps you understand what is going on under the hood
when you’re using the GUI frontend tools.

• Flexibility and efficiency: When you execute certain tasks on the com-
mand line, you have more flexibility, power, and control. For example,
piping and redirection allow you to combine multiple steps into a single
command line.

• Unix philosophy: The traditional Unix philosophy is to create simple
tools that do one job well, whereas large GUI programs pack rich and
complex functionality into one large monolithic program.

• Remote access: Command line activity is secure and easy to perform
remotely using ssh. In some cases, remote shell access is your only
choice, especially when you’re working with virtual or cloud-based
servers or systems located in other cities or countries.

• Headless servers: On Unix and Linux servers where an incident has
occurred, the command line might be your only option, because a GUI
might not have been installed.

• Embedded systems: The increasing popularity of embedded Unix and
Linux systems, such as Raspberry Pi, Beagleboard, or other Internet-of-
Things devices, might only have a command line interface available.

• Knowledge investment: Command line tools do not change much
over time compared to GUI tools. If you invest time learning to use
a command line tool, you won’t need to relearn everything when the
command is updated or new features are added.

• Personal preference: Some tech people simply prefer using the com-
mand line rather than a GUI and would use it if given the option.

This book provides you with a command line guide for performing dig-
ital forensic acquisition for investigations and incident response activities. It
does not cover GUI equivalent tools or frontends.
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Target Audience and Prerequisites
I wrote this book with a specific audience in mind. I had some expectations
and made some assumptions when writing many sections.

Who Should Read This Book?
This book primarily benefits two groups of people. First, it helps experi-
enced forensic investigators advance their Linux command line skills for
performing forensic acquisition work. Second, it’s useful for experienced
Unix and Linux administrators who want to learn digital forensic acquisition
techniques.

The book targets the growing number of forensic practitioners com-
ing from a number of areas, including incident response teams; computer
forensic investigators within large organizations; forensic and e-discovery
technicians from legal, audit, and consulting firms; and traditional forensic
practitioners from law enforcement agencies.

By the end of this book, you should have a comprehensive and complete
picture of the command line tool landscape available for performing foren-
sic acquisition of storage media and the management of forensic images.

Prerequisite Knowledge
This book assumes that you have a working knowledge of OSes, in partic-
ular, the Unix and Linux shell environment. The examples in this book
use the Bash shell extensively. You should also have an understanding of
how to run command line programs as well as how to do basic piping and
redirecting between programs.

Additionally, you should have a basic understanding of digital forensics
principles, including write-blocking technology, sector-by-sector acquisition,
and preserving evidence integrity with cryptographic hashing. This founda-
tional knowledge is assumed when applying the examples presented.

Preinstalled Platform and Software
You should have access to a functioning Linux platform with the relevant
tools already installed. The book doesn’t cover how to find, download, com-
pile, or install various tools. If you have a reasonably new machine (within a
year of this book’s publication date) with a recent distribution of Linux, the
examples should work without any issues. Some of the tools are not part of
standard Linux distributions but can easily be found on github or by search-
ing for them.

How the Book Is Organized
Rather than a chronological list of steps, this book is intended to be more
of a cookbook of tasks. However, the book does follow a logical progression,
from setting up a platform, planning and preparation, and acquisition to
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post acquisition activities. In general, the book is designed as a reference, so
you don’t need to read it from beginning to end. Certain sections assume
some knowledge and understanding of prior sections, and appropriate cross-
references to those sections are provided.

• Chapter 0 is a general introduction to digital forensics. I also cover the
history and evolution of the field, mentioning significant events that
have shaped its direction. I give special emphasis to the importance
of standards needed to produce digital evidence that can be used in a
court of law. The overall book strives to be international and indepen-
dent of regional legal jurisdictions. This is important today, because
more criminal investigations span country borders and involve multiple
jurisdictions. Also, due to the increase in private sector forensic capabil-
ities, the book will be useful for private forensic labs, especially in global
firms.

• Chapter 1 provides a technical overview of mass storage media, connec-
tors and interfaces, and the commands and protocols used to access
the media. It covers the technologies a typical forensic investigator
will encounter working in a professional forensic lab environment. I’ve
made an effort to help you achieve clear understanding of the different
storage media interfaces, protocol tunneling, bridging, and how storage
media attach and interact with a host system.

• Chapter 2 provides an overview of Linux as a forensic acquisition plat-
form. It briefly touches on the advantages and disadvantages of using
Linux and open source software. It describes how the Linux kernel rec-
ognizes and handles new devices being attached to the system and how
you can access those devices. The chapter presents an overview of Linux
distributions and shell execution. It also explains the use of piping and
redirection as an important concept used throughout the book.

• Chapter 3 covers the various raw and forensic formats commonly used
in the field. These formats are the digital “evidence bags” for acquired
storage media. The chapter explains raw images; describes commercial
forensic formats, such as EnCase and FTK; and covers formats from the
research community, such as AFF. It also introduces a simple forensic
evidence container, based on SquashFS, and a tool for managing it.

• Chapter 4 is a transitional point in the book, leaving the theoretical
and entering more practical and procedural territory. It begins with
examples of maintaining logs and audit trails and saving command
data for use in formal forensic reports. It covers various planning and
logistical issues frequently faced by forensic investigators. It ends with a
section on setting up a forensically sound, write-blocked working envi-
ronment to prepare for the actual acquisition process.

• Chapter 5 progresses with attaching a suspect disk to the acquisition
host and gathering data (ATA, SMART, and so on) about the disk. At
this stage, media accessibility restrictions, such as HPA and DCO, are
removed, and locked and self-encrypted disks are made accessible. This
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chapter also covers several special topics, such as Apple Target Disk
Mode. At this point, the disk is prepared and ready for you to execute
acquisition commands.

• Chapter 6 executes the acquisition, demonstrating multiple forms of
forensic acquisition using open source as well as proprietary tools.
Emphasis is placed on preserving evidence during acquisition using
hashes, signatures, and timestamping services. The chapter also covers
handling various scenarios with bad blocks and errors, as well as remote
acquisition over a network. Special topics include the acquisition of
tapes and RAID systems.

• Chapter 7 focuses on managing acquired disk images. This chapter
assumes the forensic image has been successfully made, and typical
post acquisition tasks are described. These tasks include compressing,
splitting, and encrypting images; converting between forensic formats;
cloning or duplicating images; transferring images to other parties; and
preparing images for long-term storage. The chapter ends with a section
on secure data disposal.

• Chapter 8 covers a number of special tasks that you can do post acqui-
sition in preparation for examination. These tasks include accessing
images via loop devices, accessing virtual machine images, and accessing
OS-encrypted images (BitLocker, FileVault, TrueCrypt/VeraCrypt, and
so on). The chapter also covers accessing other virtual disk containers.
These techniques enable you to conduct forensic analysis on the images
and allow you to safely browse the filesystem using regular file managers
and other programs.

• Chapter 9 partly enters the forensic analysis realm and demonstrates
extracting subsets of data from images. It includes identifying and
extracting partitions (including deleted partitions), extracting inter-
partition gaps, extracting slack space, and extracting previously hidden
areas of the disk (DCO and HPA). The chapter shows several examples
of piecewise data extraction, including the extraction of individual sec-
tors and blocks.

Each chapter might describe several different tools used to perform
the same task. Often, multiple tools will be available to you to perform the
same task, and depending on the situation, one tool might be more useful
than another. In such cases, I discuss the advantages and disadvantages of
each tool.

Each section in a chapter follows roughly the same structure. The title
provides a high-level description of the topic. An introductory paragraph
describes the motivation for the section and explains why the particular task
is useful for investigations, digital forensics, or incident response. In many
cases, the motivation is driven by legal or industry-accepted standards. It’s
important to know and understand these standards, because they support
the forensic soundness of the work being done. Where necessary, I provide
references to the source code of tools, additional information, or other
articles of interest.
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Prior to introducing or demonstrating a new tool, I provide a paragraph
that describes the function or purpose of the tool and its relevance to digital
forensics. In some cases, the history of the tool might also be of interest to
you, so I include that as well.

After a description of the task and tool(s), you’ll see one or more com-
mand line examples as well as the command output (displayed in blocks of
monospaced or fixed-width font). A command might be repeated to show
different variations or extended forms of use. Each command example is
followed by a paragraph that describes the command being executed and
explains the resulting output.

A final paragraph might include potential gotchas, caveats, risks, and
common problems or mistakes you might encounter that are relevant to
digital forensic investigations.

The Scope of This Book
This book focuses on the forensic acquisition of common storage media and
the steps required to preserve evidence. Although some triage and analysis
work is shown, in general, forensic analysis of application and OS data is
considered outside the scope of this book.

A number of other areas are also outside the scope of this book, includ-
ing data acquisition from areas other than traditional storage media, for
example, network forensic acquisition, memory acquisition from live sys-
tems, cloud data acquisition, and so on.

In various places, I mention enterprise class storage media and legacy
storage media, but I don’t provide practical examples. These are less com-
monly found in forensic lab settings. However, many of the methods pre-
sented will generally work with enterprise or legacy storage hardware.

The acquisition of proprietary devices is also beyond the scope of this
book. Acquiring the latest generation of mobile phones, tablets, or Internet-
of-Things devices might be possible with the tools and techniques shown in
the book (if they behave as block devices in the Linux kernel), but I don’t
explicitly cover such devices.

Conventions and Format
Examples of code, commands, and command output are displayed in a
monospace or fixed-width font, similar to what you see on a computer termi-
nal screen. In some places, nonrelevant command output may be removed
or truncated and replaced with an ellipsis (...), and when lines are too long
for the book’s margins, they are wrapped and indented.

Commands that you can run without root privilege use a $ prompt. Priv-
ileged commands that typically need to be run as root are prefixed with #.
For brevity, the use of sudo or other privilege escalation is not always shown.
Some sections provide more information about running command proce-
dures as a non-root user.
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In the computer book industry, it is common practice to change the
timestamps in blocks of code and command output to a point in the future
after release, giving the contents a newer appearance. I felt that writing
a book about preserving evidence integrity and then manipulating the
very evidence provided in the book (by forward dating timestamps) wasn’t
appropriate. All the command output you see in this book reflects the actual
output from the testing and research, including the original dates and time-
stamps. Aside from snipping out less relevant areas with ... and removing
trailing blank lines, I left the command output unchanged.

A bibliography is not provided at the end of the book. All references
are included as footnotes at the bottom of the page where the source is
referenced.

The investigator’s or examiner’s workstation is referred to as the acqui-
sition host or examination host. The disk and image that are undergoing
acquisition are referred to as the subject disk, suspect disk, or evidence disk.

A number of terms are used interchangeably throughout the book. Disk,
drive, media, and storage are often used interchangeably when they’re used in
a generic sense. Forensic investigator, examiner, and analyst are used through-
out the book and refer to the person (you) using the examination host
for various forensic tasks. Imaging, acquisition, and acquiring are used inter-
changeably, but the word copying is deliberately excluded to avoid confusion
with regular copying outside the forensic context.
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0
DIGITAL FORENSICS OVERVIEW

Some historical background about the
field of digital forensics leading up to the

present day helps to explain how the field
evolved and provides additional context for

some of the problems and challenges faced by profes-
sionals in the forensics industry.

Digital Forensics History

Here, I discuss the development of modern digital forensics as a scientific
discipline.

Pre-Y2K
The history of digital forensics is short compared to that of other scientific
disciplines. The earliest computer-related forensics work began during the
1980s, when practitioners were almost exclusively from law enforcement or
military organizations. During the 1980s, the growth of home computers
and dial-up BBS services triggered early interest in computer forensics
within law enforcement communities. In 1984, the FBI developed a pio-
neering program to analyze computer evidence. In addition, the increase



in abuse and internet-based attacks led to the creation of the Computer
Emergency Response Team (CERT) in 1988. CERT was formed by the
Defense Advanced Research Projects Agency (DARPA) and is located at
Carnegie Mellon University in Pittsburgh.

The 1990s saw major growth in internet access, and personal computers
in the home became commonplace. During this time, computer forensics
was a major topic among law enforcement agencies. In 1993, the FBI hosted
the first of multiple international conferences on computer evidence for
law enforcement, and in 1995, the International Organization of Computer
Evidence (IOCE) was formed and began making recommendations for
standards. The concept of “computer crime” had become a reality, not just
in the United States but internationally. In 1999, the Association of Chief
Police Officers (ACPO) created a good practice guide for UK law enforce-
ment personnel who handled computer-based evidence. Also during the late
1990s, the first open source forensic software, The Coroner’s Toolkit, was
created by Dan Farmer and Wietse Venema.

2000–2010
After the turn of the millennium, a number of factors increased demand
for digital forensics. The tragedy of September 11, 2001, had a tremen-
dous impact on how the world viewed security and incident response.
The Enron and Anderson accounting scandals led to the creation of the
Sarbanes-Oxley Act in the United States, designed to protect investors by
improving the accuracy and reliability of corporate disclosures. This act
required organizations to have formal incident response and investigation
processes, typically including some form of digital forensics or evidence
collection capability. The growth of intellectual property (IP) concerns also
had an impact on civilian organizations. Internet fraud, phishing, and other
IP- and brand-related incidents created further demand for investigation
and evidence gathering. Peer-to-peer file sharing (starting with Napster),
along with the arrival of digital copyright legislation in the form of the Digi-
tal Millennium Copyright Act (DMCA), led to increased demand for investi-
gating digital copyright violation.

Since 2000, the digital forensics community has made great strides in
transforming itself into a scientific discipline. The 2001 DFRWS Conference
provided important definitions and challenges for the forensic community,
and it defined digital forensics as follows:

The use of scientifically derived and proved methods toward the
preservation, collection, validation, identification, analysis, inter-
pretation, documentation and presentation of digital evidence
derived from digital sources for the purpose of facilitating or
furthering the reconstruction of events found to be criminal, or
helping to anticipate unauthorized actions shown to be disruptive
to planned operations.1

1. Gary Palmer, “A Roadmap for Digital Forensic Research.” Digital Forensics Research Work-
shop (DFRWS), 2001. Technical report DTR-T0010-01, Utica, New York.
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While the forensics community defined its scope and goal of becoming a
recognized scientific research field, practitioner-level standards, guidelines,
and best-practice procedures were also being formalized. The Scientific
Working Group on Digital Evidence (SWGDE) specified definitions and
standards, including the requirement of Standard Operating Procedures
(SOPs) for law enforcement. The 2000 IOCE Conference in France worked
toward formalizing procedures for law enforcement practitioners through
guidelines and checklists. The 13th INTERPOL Forensic Science Sympo-
sium, also in France, outlined the requirements of groups involved in digital
forensics and specified a comprehensive set of standards and principles for
government and law enforcement. The US Department of Justice published
a detailed first responders’ guide for law enforcement (US DOJ Electronic
Crime Scene Investigation: A Guide for First Responders) and NIST’s Computer
Forensics Tool Testing project (CFTT) wrote the first Disk Imaging Tool Speci-
fication.

During this decade several peer reviewed academic journals were intro-
duced to publish the increasing body of knowledge. The International Journal
of Digital Evidence (IJDE) was created in 2002 (and ceased in 2007), and Digi-
tal Investigation: The International Journal of Digital Forensics & Incident Response
was created in 2004.

2010–Present
In the years since 2010, a number of events have shifted the focus toward
investigating and collecting evidence from cyber attacks and data breaches.

WikiLeaks (http://www.wikileaks.org/) began publishing leaked material
from the US military, including videos and diplomatic cables. Anonymous
gained notoriety for distributed denial-of-service (DDoS) attacks and other
hacktivist activity. LulzSec compromised and leaked data from HBGary Fed-
eral and other firms.

The investigation of Advanced Persistent Threat (APT) malware became
a major topic in the industry. The extent of government espionage using
malware against other governments and private industry was made public.
The Stuxnet worm targeting SCADA systems, in particular, control systems
in the Iranian nuclear program, was discovered. Mandiant published its
investigation of APT1, the Cyber Warfare unit of the Chinese Army. Edward
Snowden leaked a vast repository of documents revealing the extent of
NSA hacking. The release of data from the Italian company HackingTeam
revealed the professional exploit market being sold to governments, law
enforcement agencies, and private sector companies.

Major data breaches became a concern for private sector companies as
credit card and other data was stolen from Sony, Target, JPMorgan Chase,
Anthem, and others. The global banking industry faced a major increase in
banking malware (Zeus, Sinowal/Torpig, SpyEye, Gozi, Dyre, Dridex, and
others), which successfully targeted banking clients for the purpose of finan-
cial fraud. More recently, attacks involving ransoms have become popular
(Ransomware, DDoS for Bitcoin, and so on).
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This diverse array of hacking, attacks, and abuse has broadened the
focus of digital forensics to include areas of network traffic capture and
analysis and the live system memory acquisition of infected systems.

Forensic Acquisition Trends and Challenges
The field of digital forensics is constantly transforming due to changes and
advances in technology and criminality. In this section, I discuss recent chal-
lenges, trends, and changes that are affecting traditional forensic acquisition
of storage media.

Shift in Size, Location, and Complexity of Evidence
The most obvious change affecting forensic image acquisition is disk capac-
ity. As of this writing, consumer hard disks can store 10TB of data. The
availability of easy-to-use RAID appliances has pushed logical disk capacity
to even greater sizes. These large disk capacities challenge traditional foren-
sic lab acquisition processes.

Another challenge is the multitude of storage devices that are found at
crime scenes or involved in incidents. What used to be a single computer
for a household has become a colorful array of computers, laptops, tablets,
mobile phones, external disks, USB thumb drives, memory cards, CDs and
DVDs, and other devices that store significant amounts of data. The chal-
lenge is actually finding and seizing all the relevant storage media, as well as
acquiring images in a manner that makes everything simultaneously accessi-
ble to forensic analysis tools.

The shifting location of evidence into the cloud also creates a num-
ber of challenges. In some cases, only cached copies of data might remain
on end user devices, with the bulk of the data residing with cloud service
providers. Collecting this data can be complicated for law enforcement if
it resides outside a legal jurisdiction, and difficult for private organizations
when outsourced cloud providers have no forensic support provisions in
their service contract.

The Internet of Things is a fast-growing trend that is poised to challenge
the forensics community as well. The multitude of little internet-enabled
electronic gadgets (health monitors, clocks, environmental displays, security
camera devices, and so on) typically don’t contain large amounts of storage.
But they might contain useful telemetry data, such as timestamps, location
and movement data, environmental conditions, and so forth. Identifying
and accessing this data will eventually become a standard part of forensic
evidence collection.

Arguably, the most difficult challenge facing forensic investigators today
is the trend toward proprietary, locked-down devices. Personal computer
architectures and disk devices have historically been open and well docu-
mented, allowing for the creation of standard forensic tools to access the
data. However, the increased use of proprietary software and hardware
makes this innovation difficult. This is especially problematic in the mobile
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device space, where devices may need to be jail broken (effectively hacked
into) before lower-level filesystem block access is possible.

Multijurisdictional Aspects
The international nature of crime on the internet is another challenge
facing forensic investigators. Consider a company in country A that is tar-
geted by an attacker in country B who uses relaying proxies in country C
to compromise infrastructure via an outsourcing partner in country D and
exfiltrates the stolen data to a drop zone in country E. In this scenario,
five different countries are involved, meaning the potential coordination
of five different law enforcement agencies, engaging at least five different
companies, across five different legal jurisdictions. This multiple-country
scenario is not unusual today; in fact, it is rather common.

Industry, Academia, and Law Enforcement Collaboration
The increasingly complex and advanced nature of criminal activity on the
internet has fostered increased cooperation and collaboration to gather
intelligence and evidence and to coordinate investigations.

This collaboration among competing industry peers can be viewed as
fighting a common enemy (the banking industry against banking malware,
the ISP industry against DDoS and spam, and so on). Such collaboration has
also crossed private and public sector boundaries: law enforcement agencies
work together with industry partners to combat criminal activity in public-
private partnerships (PPPs). This multifaceted cooperation creates opportu-
nities to identify, collect, and transfer digital evidence. The challenge here is
ensuring that private partners understand the nature of digital evidence and
are able to satisfy the standards expected of law enforcement in the public
sector. This will increase the likelihood of successful prosecution based on
evidence collected by the private sector.

A third group that is collaborating with industry and law enforcement
is the academic research community. This community typically consists of
university forensic labs and security research departments that delve into the
theoretical and highly technical aspects of computer crime and forensics.
These researchers are able to spend time analyzing problems and gaining
insight into new criminal methods and forensic techniques. In some cases,
they’re able to lend support to law enforcement where the standard forensic
tools are not able to extract or analyze the evidence needed. The academic
groups must also understand the needs and expectations of managing and
preserving digital evidence.

Principles of Postmortem Computer Forensics
The principles of digital forensics as a scientific discipline are influenced by
a number of factors, including formally defined standards, peer-reviewed
research, industry regulation, and best practices.
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Digital Forensic Standards
Standards for the collection and preservation of traditional physical evi-
dence have depended heavily on the local legal jurisdiction. In contrast,
digital evidence collection has matured in an international setting and
interconnected environment with multiple jurisdictions contributing to the
research and the development of standards. Typically hardware, software,
file formats, network protocols, and other technologies are the same across
the globe. For this reason, standards and processes for collecting digital
evidence are more aligned across jurisdictions. A good example is the use
of write blockers for attaching disks to imaging machines, a practice that is
accepted nearly everywhere worldwide.

Several formal standards bodies exist that define the standards of foren-
sic acquisition. The US National Institute of Standards and Technology
(NIST) provides the Computer Forensic Tool Testing (CFTT) program. Its
goal is stated here:

The goal of the Computer Forensic Tool Testing (CFTT) project
at the National Institute of Standards and Technology (NIST) is
to establish a methodology for testing computer forensic software
tools by development of general tool specifications, test proce-
dures, test criteria, test sets, and test hardware.

Although NIST is a US-centric organization, many of its standards are
adopted internationally or at least influence the standards bodies in other
countries.

The International Organization for Standardization (ISO) also provides
a number of standards pertaining to digital evidence. Relevant to forensic
acquisition are the ISO Guidelines for identification, collection, acquisition,
and preservation of digital evidence:

ISO/IEC 27037:2012 provides guidelines for specific activities in
the handling of digital evidence, which are identification, collec-
tion, acquisition and preservation of potential digital evidence that
can be of evidential value.

It provides guidance to individuals with respect to common
situations encountered throughout the digital evidence handling
process and assists organizations in their disciplinary procedures
and in facilitating the exchange of potential digital evidence
between jurisdictions.

Individual police forces may have their own standards that outline the
evidence collection process. For example, in the United Kingdom, the
Association of Chief Police Officers (ACPO) provides the ACPO Good Practice
Guide for Digital Evidence. The guide states:

This best practice guide has been produced by the ACPO Crime
Business Area and was originally approved by ACPO Cabinet in
December 2007. The purpose of this document is to provide guid-
ance not only to assist law enforcement but for all that assists in
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investigating cyber security incidents and crime. It will be updated
according to legislative and policy changes and re-published as
required.

This document references a number of other standards and documents
put forth by ACPO and others.

The US Department of Justice maintains Electronic Crime Scene Investiga-
tion: A Guide for First Responders. The introduction to the guide states:

This guide is intended to assist State and local law enforcement
and other first responders who may be responsible for preserving
an electronic crime scene and for recognizing, collecting, and
safeguarding digital evidence.

A number of other international organizations contribute to the devel-
opment of standards through the creation of forensic working groups, com-
mittees, and communities.

Peer-Reviewed Research
Another source of digital forensic standards and methods is peer-reviewed
research and academic conferences. These resources put forward the latest
advances and techniques in the digital forensics research community. Basing
forensic work on peer-reviewed scientific research is especially important
with newer methods and technologies because they may be untested in
courts.

Several international academic research communities exist and con-
tribute to the body of knowledge. The most prominent research journal
in the field of forensics is Digital Investigation: The International Journal of
Digital Forensics & Incident Response, which has been publishing academic
research from the field for more than a decade. The stated aims and scope
are described as follows:

The Journal of Digital Investigation covers cutting edge develop-
ments in digital forensics and incident response from around the
globe. This widely referenced publication helps digital investiga-
tors remain current on new technologies, useful tools, relevant
research, investigative techniques, and methods for handling
security breaches. Practitioners in corporate, criminal and military
settings use this journal to share their knowledge and experiences,
including current challenges and lessons learned in the following
areas:

Peer-reviewed research: New approaches to dealing with chal-
lenges in digital investigations, including applied research into
analyzing specific technologies, and application of computer
science to address problems encountered in digital forensics and
incident response.

Practitioner reports: Investigative case studies and reports
describing how practitioners are dealing with emerging challenges
in the field, including improved methods for conducting effective
digital investigations. . . .
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The leading digital forensics academic research conference is the Digital
Forensics Research WorkShop (DFRWS). This conference began in 2001
and has remained US based, although in 2014, a separate European event
was created. The stated purpose of DFRWS is as follows:2

• Attract new perspectives and foster exchange of ideas to advance digital
forensic science

• Promote scholarly discussion related to digital forensic research and its
application

• Involve experienced analysts and examiners from law enforcement, mili-
tary, and civilian sectors to focus research on practitioner requirements,
multiple investigative environments, and real world usability

• Define core technologies that form a focus for useful research and
development

• Foster the discovery, explanation, and presentation of conclusive, per-
suasive evidence that will meet the heightened scrutiny of the courts and
other decision-makers in civilian and military environments

• Establish and expand a common lexicon so the community speaks the
same language

• Engage in regular debate and collaborative activity to ensure a sharp
focus, high interest, and efficacy

• Maintain a dynamic community of experts from academia and practice

• Increase scientific rigor in digital forensic science

• Inspire the next generation to invent novel solutions

Full disclosure: I am an editor for Digital Investigation and participate in
the organizing committee of DFRWS Europe.

Industry Regulations and Best Practice
Industry-specific regulations may place additional requirements (or restric-
tions) on the collection of digital evidence.

In the private sector, industry standards and best practice are developed
by various organizations and industry groups. For example, the Informa-
tion Assurance Advisory Council (IAAC) provides the Directors and Corporate
Advisors’ Guide to Digital Investigations and Evidence.

Other sources include standards and processes mandated by legal and
regulatory bodies, for example, the requirements for evidence collection
capability in the US Sarbanes-Oxley legislation.

Some digital evidence requirements might depend on the industry.
For example, healthcare regulations in a region may specify requirements
for data protection and include various forensic response and evidence
collection processes in the event of a breach. Telecom providers may have

2. http://www.dfrws.org/about-us/
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regulations covering log retention and law enforcement access to infrastruc-
ture communications. Banking regulators also specify requirements and
standards for digital evidence. A good example is the Monetary Authority
of Singapore (MAS), which provides detailed standards for the banking
community in areas such as security and incident response (http://www.mas
.gov.sg/regulations-and-financial-stability/regulatory-and-supervisory-framework/
risk-management/technology-risk.aspx).

With the recent increase in cyber attacks targeting different sectors
(finance, health, and so on), regulatory bodies may play a larger role in
influencing and defining standards for evidence collection in the future.

Principles Used in This Book
This book focuses on forensic tasks that the private and public sectors have
in common. The examples begin with a simplified forensic acquisition, and
further examples demonstrate additional features and capabilities of the
acquisition process. This includes preserving evidence using cryptographic
hashing and signing, logging, performance, error handling, and securing
an acquired image. I also explain several techniques for imaging over a net-
work, as well as special topics, such as magnetic tapes and RAID systems.

To perform a forensic acquisition, there are several prerequisites:

• The subject drive is attached and recognized by the Linux kernel.

• Write blocking is established.

• The subject drive has been positively identified and documented.

• Full access to the device is possible (HPA, DCO, and ATA security are
disabled).

• Time and storage capacity are available to perform the acquisition.

The forensic acquisition process and tools testing are well docu-
mented within the digital forensics community, and certain requirements
are expected. A useful resource is the CFTT Program instituted by NIST.
The top-level forensic-imaging requirements from NIST include the
following:

• The tool shall make a bitstream duplicate or an image of an original
disk or partition.

• The tool shall not alter the original disk.

• The tool shall log I/O errors.

• The tool’s documentation shall be correct.

These principles, described in a paper published by NIST,3 provide
a foundation for the rest of the book. They exist to ensure that evidence
integrity is preserved, and tampering is either prevented or detected.

3. https://utica.edu/academic/institutes/ecii/publications/articles/A04BC142-F4C3-EB2B
-462CCC0C887B3CBE.pdf
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Some research has challenged views that a complete acquisition can be
achieved given the restrictions and limitations of the ATA interface used to
access the physical disk.4 A theoretically complete acquisition includes all
sectors on magnetic disks and memory beneath the flash translation layer of
SSDs and flash drives, and it now extends to the locked-down mobile devices
that can’t be imaged with traditional block device methods. It is becoming
increasingly difficult to achieve “complete” acquisition of all physical storage
of a device. For mobile devices, the forensics community has already made
the distinction between physical and logical acquisition, with the latter refer-
ring to the copying of files and data rather than the imaging of drive sectors.

For the examples you’ll see in this book, forensic completeness is con-
sidered to be acquiring areas of a disk that can be reliably and repeatably
accessed with publicly available software tools using published interface spec-
ifications. Areas of a disk that are accessible only through nonpublic vendor
proprietary tools (in-house diagnostics, development tools, and so on) or by
using hardware disassembly (chip desoldering, head assembly replacement,
disk platter removal, and so on) are not within the scope of this book.

This has been a brief introduction to the field of digital forensics. Chap-
ter 1 continues with an introduction to storage media technologies and the
interfaces used to attach them to an acquisition host.

4. “Forensic Imaging of Hard Disk Drives—What We Thought We Knew,” Forensic Focus,
January 27, 2012, http://articles.forensicfocus.com/2012/01/27/forensic-imaging-of-hard-disk
-drives-what-we-thought-we-knew-2/.
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1
STORAGE MEDIA OVERVIEW

This chapter serves as an overview of PC
bus systems, common mass storage media,

physical connectors and interfaces, and the
low-level protocol commands used to com-

municate with attached storage devices. It also pro-
vides the background for understanding the forensic
acquisition of storage media described in the rest of
the book.

In general, mass storage technologies are grouped into three broad
categories: magnetic media, non-volatile memory (flash), and optical media.
Storage media can be built into a device or be removable. The device also
contains the drive electronics needed to interface with the media. Storage
devices are accessed by a system through an internal or external bus or
interface.

The chapter begins with overviews of these three storage technologies
and touches on key points related to digital forensics. The final two sections
describe how these storage devices attach to and communicate with a Linux
system, and I discuss items of particular interest to a forensic examiner.



This chapter primarily focuses on modern PC architectures and compo-
nents. Former popular legacy technologies might be mentioned but not cov-
ered in depth. I’ve also limited this overview to computer equipment used in
small server environments and by individuals (employees, home users, and
so on) rather than covering large enterprise technology. Storage technolo-
gies in large enterprise environments are not always suited for traditional
disk media forensic imaging; in some cases, the sheer volume of storage
space makes traditional acquisition infeasible, and business-critical enter-
prise systems typically can’t be taken offline like smaller PC-based systems.

Magnetic Storage Media
Magnetic media is the oldest of the three basic storage technologies (pre-
ceded by paper tape and punch cards) and is the current leader in capacity.
The two primary magnetic storage media types in use today are hard disks
and tapes; both provide high capacity and reliability for online storage and
offline archival storage.

NOTE The capacity race between magnetic disks and solid state drives (SSDs) is heating up.
During the writing of this book, a 16TB SSD was announced and, when released,
could be the world’s largest disk.

Hard Disks
Hard disks have consistently provided higher capacities than other media,
such as SSD or optical. As of this writing, 10TB hard disks are available on
the consumer market, and higher capacities are expected.

Hard disks are built with rotating platters coated with magnetized mate-
rial, as shown in Figure 1-1. Multiple platters are stacked on a spindle, and
read/write heads on a movable arm (the actuator) can read/write encoded
data from/to the magnetic surface. Currently, common hard disk form
factor sizes include 3.5 inch, 2.5 inch, and 1.8 inch. Because hard disks
are mechanical devices, they’re sensitive to shock, dropping, dust, mois-
ture, and other environmental factors. Typical hard disk failures involve
scratched platter surfaces, stuck or damaged heads, motor failure, and
failed electronic circuitry.

The real physical geometry (heads, platters, tracks, sectors per track) of
the disk is abstracted from the computer and is accessible as a sequence of
sectors using Logical Block Addresses (LBA). A sector is the smallest address-
able disk unit for reading and writing data. Historically, the standard physi-
cal hard disk sector size was 512 bytes; however, modern disks have transi-
tioned to 4K sector sizes. Most current drives continue to provide a 512-byte
emulation of the sector size, but drives with a native 4K sector size (known
as 4Kn drives) are already on the market. Using 4Kn disks has performance
advantages, and it’s likely they’ll someday overtake traditional 512-byte emu-
lated drives. Refer to “Advanced Format 4Kn” on page 41 for more detail
about 4Kn disk drives.
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Figure 1-1: Magnetic hard disk

Traditional computer forensics originated from the need to analyze
hard disks, which continue to be significant evidence sources today. In par-
ticular, when an OS “deletes” a file, it simply unlinks any references to the
data blocks on the disk (unlike SSDs, which use a TRIM command to clear
unallocated blocks). Those blocks are not erased from the magnetic platters,
remaining on the disk where forensic tools can recover them (until they’re
overwritten).

Magnetic Tapes
The use of magnetic tapes in the home user marketplace has nearly
disappeared, but small business and enterprise environments continue
to use magnetic tapes for backups and archiving. Tapes, as shown in Fig-
ure 1-2, are one of the earlier forms of digital storage and have a reputation
as a mature technology, reliable for long-term offline storage. Unlike disks,
SSD/flash, or optical disks, tapes can only read or write data sequentially.
Randomly accessing different blocks on a tape requires the user to rewind
or forward the tape to the desired location before it can be read or written.
This lack of random block access prevents tapes from being used as regular
filesystems. Data is stored on tapes as a sequence of tape files; each file is
typically an archive containing a filesystem or group of files and directories
(using archive formats, such as TAR, DUMP, and so on.). Tape drives are
controlled using SCSI tape commands to read and write data, position or
rewind the tape, and eject the tape.

NOTE Newer Linear Tape-Open, or LTO, drives can simulate a regular filesystem with
the Linear Tape File System (LTFS), but this is not random access and files are still
sequentially read and written.
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Figure 1-2: Magnetic tapes

Here are some examples of a Fibre Channel LTO5 tape drive and a USB
DAT160 tape drive; both are attached to a Linux system. The dmesg output
of the tape drives looks like this:

[ 11.290176] scsi 1:0:0:0: Sequential-Access TANDBERG LTO-5 HH

Y629 PQ: 0 ANSI: 6

[ 11.293554] scsi 1:0:0:0: Attached scsi generic sg5 type 1

[ 11.345030] st: Version 20101219, fixed bufsize 32768, s/g segs 256

[ 11.361189] st 1:0:0:0: Attached scsi tape st0

...

[ 3263.575014] usb 1-8: new high-speed USB device number 14 using xhci_hcd

[ 3263.703245] usb 1-8: New USB device found, idVendor=03f0, idProduct=0225

[ 3263.703250] usb 1-8: New USB device strings: Mfr=1, Product=2, SerialNumber=3

[ 3263.703253] usb 1-8: Product: DAT160 USB Tape

[ 3263.703255] usb 1-8: Manufacturer: Hewlett Packard

[ 3263.703257] usb 1-8: SerialNumber: 48553101234E4648

[ 3263.704156] usb-storage 1-8:1.0: USB Mass Storage device detected

[ 3263.704295] scsi host12: usb-storage 1-8:1.0

[ 3264.713397] scsi 12:0:0:0: Sequential-Access HP DAT160

WU8A PQ: 0 ANSI: 3

[ 3264.722279] st 12:0:0:0: Attached scsi tape st1

Once tape archive files have been written, an End Of Data (EOD) marker
is also written to the tape. This informs the drive that the end of the tape
data has arrived and prevents the drive from reading any further. From a
forensics perspective, however, any data beyond the EOD marker is of inter-
est because it may contain data from previous tape writes. No generic SCSI
commands are available to acquire data beyond the EOD marker. Special-
ized tape drives and equipment are needed to complete this task.
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Legacy Magnetic Storage
There are many legacy magnetic storage types, especially among removable
media. Floppy diskettes evolved over several generations before becom-
ing obsolete. A number of proprietary storage products, such as Jaz, Zip,
Syquest, and so on, were popular on the market during the ’80s and ’90s. A
large variety of magnetic tapes are no longer in use, for example, 4mm DAT,
8mm Exabyte, and QIC. The forensic acquisition of these storage types is
beyond the scope of this book. However, if functioning hardware and inter-
faces are available, you can acquire the data on most of these older devices
using the same techniques described in this book. If the Linux kernel rec-
ognizes the sector-based media and it’s made available as a block device,
you can acquire it. If the Linux kernel recognizes tape drives as SCSI tape
devices, you can access them using standard SCSI tape commands. For pro-
prietary storage, kernel drivers or userspace tools might be available, which
can provide you with access to legacy storage products.

Non-Volatile Memory
Non-volatile memory, typically using NAND flash technology, is growing in
popularity and starting to replace magnetic hard disks in situations where
very large capacities are not needed. (NAND refers to transistors operating
as a logical NAND gate.) This type of memory creates a new set of challenges
for forensic investigators because it doesn’t exhibit the same low-level prop-
erties as magnetic disks.1

SSD and flash media are typically NAND-based storage and have no
moving parts. Data is stored in an array of memory cells, and a layer of
abstraction, the Flash Translation Layer (FTL), makes the drive behave as
a linear sequence of sectors similar to a hard disk. Because non-volatile
memory disks are implemented in circuitry and are not mechanical, they
are silent, use less power, and do not suffer from the same risk of physi-
cal damage as hard disks do. In terms of performance, they can randomly
access and write data faster because there are no physical heads seeking to
locations on a disk. (This also means there’s no performance advantage to
defragmenting filesystems.) The memory in SSD/flash drives doesn’t have
the same longevity as the magnetic platters in hard disks. Certain meth-
ods, such as wear leveling and over-provisioning, are used to prolong the
life of SSD media. Wear leveling refers to the mechanism used to distribute
reads and writes across the drive, ensuring blocks are evenly used during the
lifetime of the drive. As blocks deteriorate or become unwritable, they’re
removed from use by the FTL and replaced with blocks from a pool of
reserved (over-provisioned) blocks. These “retired” blocks can be read by
removing (desoldering) the physical chips and reading out the memory.
Some professional forensic laboratories perform this process, sometimes
called chip-off, for various flash-based storage. Over-provisioning of blocks

1. Jeff Hedlesky, “Advancements in SSD Forensics” (presentation, CEIC2014, Las Vegas, NV,
May 19–22, 2014).
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during manufacture can take up to 10 to 25 percent of a flash disk (which
is inaccessible to the user). Currently, an open source SSD firmware project
exists that is useful for learning and researching the underlying SSD technol-
ogy. You can find more information about it at http://www.openssd-project.org/
wiki/The_OpenSSD_Project.

Solid State Drives
The SSD, as shown in Figure 1-3, was designed as a drop-in replacement for
regular SATA disks. (SATA, or Serial AT Attachment, is the standard interface
for disks.) SSDs have standard SATA interfaces and Self-Monitoring, Anal-
ysis and Reporting Technology (SMART) capability and use regular ATA
commands (with some additions). Even the physical form factor of common
consumer SSDs is the same as that of magnetic hard disks. Newer SSDs pose
several challenges to digital forensic examiners, partly in the possibility to
recover data from unallocated sectors on the drive and partly in the inability
to access over-provisioned areas. SSD devices and OSes that support the ATA
TRIM command can cause the erasure of unallocated disk blocks in prepara-
tion for the next use (SSD blocks must be erased before they can be written
to or modified). This reduces the potential recovery of data in unallocated
blocks, which are typically a valuable source of evidence on magnetic disks.

Figure 1-3: SSD

You can use the hdparm command to determine the TRIM features sup-
ported by an SSD. For example:

# hdparm -I /dev/sda

...

Commands/features:

Enabled Supported:

...
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* Data Set Management TRIM supported (limit 1 block)

* Deterministic read data after TRIM

...

A modern generation of SSDs, based on new standards called SATA
Express and NVM Express, interface directly with the PCI Express bus.

USB Flash Drives
Small, portable USB flash drives, as shown in Figure 1-4, are referred to by
many names: thumb drives, USB sticks, flash dongles, or simply USB flash
drives. Flash drives initially became the replacement for floppy disks and,
due to their low price and high capacity, are now replacing CDs and DVDs.

Figure 1-4: USB flash drive

But the small size and large capacity of USB flash drives make them an
information security risk. As a result, most vendors offer security solutions
involving encryption. The most common encryption is software based and
optional. The drive’s owner must explicitly install the encryption software
provided by the vendor (or use alternative software, such as BitLocker or
TrueCrypt). Some USB sticks provide mandatory hardware-based encryption
systems. However, the added work and complexity of software encryption
and the significantly higher cost of hardware encryption have impeded
their widespread use. Plain, unencrypted USB devices are still most com-
monly used.

Removable Memory Cards
The popularity of portable devices, such as mobile phones, tablets, cameras,
and so on, has created a market for removable memory cards that you can
swap out when they’re full or when copying to a PC or another device. A
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variety of memory cards are shown in Figure 1-5. These are typically flash
based and, when placed in a card reader, appear as a linear sequence of
sectors similar to a hard disk.

Figure 1-5: Flash memory cards

The most common memory card is the Secure Digital (SD) standard,
which is available in several form factors and speeds. The CompactFlash
(CF) card is popular in high-end camera equipment and is essentially a
PATA/IDE interface with a smaller form factor. You can access it using
a PATA/IDE interface adapter. A card reader connected via USB provides
access to both memory card types (see Figure 1-6).

Figure 1-6: USB card reader

NOTE Parallel ATA (PATA) and Integrated Drive Electronics (IDE) are older stan-
dards defining a parallel interface between a drive and a computer system.
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Legacy Non-Volatile Memory
Many legacy memory cards became obsolete as the market lost interest in
their maximum capacity or proprietary interfaces. Some examples include
Sony Memory Sticks, Panasonic P2 cards, SmartMedia cards, and other PCM-
CIA/PCcard media. Typically, these memory cards attach to a Linux system
as block devices with a linear sequence of sectors, and you can image them
using the same techniques as for other memory cards (if a physical reader is
available).

Optical Storage Media
Common optical disc storage media in use today includes CD-ROMs, DVD-
ROMs, and Blu-ray discs. The different types of optical media vary in their
physical and chemical properties. Their visible differences are shown in
Figure 1-7.

Figure 1-7: Top to bottom: DVD-ROM, Blu-ray, CD-ROM

Optical discs are usually read-only, write-once, or read-writable. Profes-
sionally mastered discs are stamped rather than burned. Although they’re
slowly becoming obsolete, writable optical discs are still a common source of
digital evidence. Many forensic labs still use them for transfer and storage of
compressed forensic images.

An optical disc contains a single spiral track with a sequence of pits and
lands on a reflective surface, which can be read by a laser and interpreted
as data bits. Data is written to the surface using a laser to burn points on
the surface, which affects the reflectivity and causes the burned areas to
be interpreted as data bits. This sequence of bits is separated into sectors,
which after encoding and error correction contain 2048 bytes of user-
accessible data.
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Optical discs have one similarity to magnetic tapes: data is written as
a single linear string of bytes—files are not fragmented. Unlike tapes, it’s
possible to easily jump to random areas of the disc, making it feasible to
mount the disc as a read-only filesystem. However, writing to an optical disc
is still cumbersome and, as with a tape, must be done in a sequential order
of bytes.

Compact Discs
The oldest of the three optical discs, CD-ROM/CDR discs, were once the
most popular optical media for home user backups, personal archives, and
exchanging information. But as the use of convenient, high-capacity USB
flash drives has grown, the use of CDs for storage has declined.

A collection of standards called the Rainbow Books describes various
CD specifications, and a number of common CD standards exist. (See the
Philips intellectual property page at http://www.ip.philips.com/licensing/
program/16/ for more information.)

• Music CDs, or Compact Disc-Digital Audio (CD-DA), are specified in
the Red Book and IEC 60908 standard. Data in this format is divided into
multiple audio tracks.

• Data CDs, or Compact Disc-Read Only Memory (CD-ROM), are covered
in the Yellow Book, ISO/IEC 10149, and ECMA 130 standard (http://www
.ecma-international.org/publications/files/ECMA-ST/Ecma-130.pdf ).

• Writable CDs, or Compact Disc-Recordable/ReWritable (CD-R/CD-
RW), are part of the Orange Book standard and allow data to be written
(CD-R) or rewritten (CD-RW) to a CD.

• Less common standards include Photo-CD, Video CD (VCD), and
other obscure variations, extensions, and enhancements of the com-
mon standards.

Every CD has a linear stream of bits (pits and lands) that are abstracted
into a linear sequence of sectors. Abstracted further, above these sectors, are
sessions, which contain a lead-in area and a table of contents (TOC) for the
session. Multisession CDs can exist, and each session has its own TOC.

Data CDs can have filesystems residing on a session, which can con-
tain files and a directory structure. Some examples of CD-ROM filesystems
include:

High Sierra Original standard for PCs (8.3, uppercase)

ISO9660 Updated High Sierra for cross-platform

Joliet ISO9660 extensions; from Microsoft for Win95 and later

HFS Macintosh

Rock Ridge Extensions to ISO9660 for POSIX

El Torito Standard for bootable discs
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From a forensics perspective, user data on the entire CD can be read.
There is no equivalent to the EOD found on tapes or DCO/HPA (user-
inaccessible areas of a hard disk) found on disks. But there are filesystem-
specific artifacts that might require special analysis to interpret.

Forensic write blockers, which are forensic hardware designed to pre-
vent tampering and contaminating evidence found on drives, are unneces-
sary for CD-ROMs, given their default read-only properties. The OS will not
update timestamps or modify data on a CD simply by putting it into the CD
drive and accessing it.

CDs do have some unique identifiers that are useful in a forensic con-
text. A Source Unique Identifier (SID) is stamped on the disc and contains
information about the optical disc production facility that produced that
particular disc. This code begins with IFPI and is physically stamped on the
inner area of the disc (which can be easily read with the human eye). The
Recorder Identification Code (RID) is written to system sectors of a disc and links
a burned CD to the drive that created it. The RID is not easily accessible
without specialized hardware.

Other physical attributes, such as those indicative of piracy and counter-
feit copies, are outside the scope of this book, but you can access a guide
from the International Federation of the Phonographic Industry (IFPI) at
http://www.ifpi.org/content/ library/manual-of-guidance-chap3-english.pdf .

Digital Versatile Discs
DVDs have different physical attributes from but are logically similar to CDs.
A DVD has a single spiral track of bits split into 2048-byte sectors.

DVDs can be single sided or double sided. They can also be single
layer or double layer. Doubling a side or a layer effectively doubles the
data capacity. They have similar standards as CDs but with some additions,
discussed here: http://www.ecma-international.org/publications/files/ECMA-ST/
ECMA-382.pdf . DVD-Video, DVD-ROM, DVD-R, and DVD-RW correspond
to their CD equivalents, but an additional DVD-RAM standard is also avail-
able. An alternative set of standards was created with DVD+R and DVD+RW,
which have the same data capacities as DVD-R and DVD-RW, but the “+” and
“-” formats are incompatible (although most modern drives can read both).

The most common filesystem for DVD drives is the Universal Disk For-
mat (UDF), which is designed as a packet-writing replacement for ISO9660.

Blu-ray Discs
Blu-ray discs (BDs) use new physical manufacturing processes to further
increase the data capacity of the discs. BD is still similar to CD and DVD in
that it uses the spiral track of data split into 2048-byte sectors.

Its standards have close counterparts to CD and DVD and include
BD-ROM (Read only), BD-R (Recordable), BD-RE (ReWritable), BD-XL
(double capacity ReWritable).
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DVD and BD allow for content protection using encryption, which
can potentially cause difficulties when acquiring a protected disc during a
forensic investigation. Tools and methods to decrypt DRM-protected con-
tent exist but are left outside the scope of this book.

Legacy Optical Storage
A number of legacy optical drives exist, in particular, the cartridge-based
Write Once, Read Many (WORM) times drive. The legacy optical drives
were more commonly used in enterprise environments, typically used SCSI
interfaces, and were accessible as a linear sequence of sectors. If the drive
and a compatible controller card are still available, and the Linux kernel rec-
ognizes the media, you can read and analyze the media in the same manner
as other optical discs.

Interfaces and Physical Connectors
In this section, I’ll provide an overview of common drive interfaces from the
perspective of a forensic examiner. A forensic examiner working in a well-
equipped forensics laboratory can acquire and analyze storage media using a
variety of device interfaces.

A general trend in computing (especially with storage interfaces) is the
shift from parallel and shared buses to serial point-to-point connections.
PATA/IDE, a once-popular parallel interface with two disks sharing a single
cable, has been replaced by SATA, which has one disk on a serial cable. SCSI
was a parallel shared bus that supported multiple disks and has now been
replaced by SAS with individual serial connectors for each disk. The original
PCI bus was parallel and shared by multiple interface cards but has been
replaced by PCI Express, a serial bus with dedicated lanes per interface (also
used to attach SATA Express and NVM Express drives). The parallel printer
interface has been replaced by USB (a serial protocol, but using a shared
bus). As transmission speeds increased, the timing of parallel electrical sig-
nals became difficult to manage. Performing serialization/deserialization
of data over dedicated serial lines enabled faster transmission speeds than
managing the coordination of multiple parallel data lines.

Serial ATA
The most popular internal storage media interface in use today is SATA.
Inside PCs, most hard disks, SSDs, and optical drives connect to SATA inter-
faces on the mainboard or add-on host bus adapters. The serial architecture
of SATA has replaced parallel ATA (PATA or IDE), which used to be the
dominant consumer disk interface.

The SATA standard is managed by The Serial ATA International
Organization (http://www.sata-io.org/). Currently in revision 3, SATA pro-
vides speeds of up to 6Gbps (revisions 1 and 2 had speeds of 1.5Gbps and
3.0Gbps, respectively). In addition to the internal interface, an external
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interface (eSATA) exists that allows you to directly attach external SATA
disks. Figure 1-8 shows the SATA interface.

Figure 1-8: SATA disk interface

A smaller form factor, mini-SATA (mSATA), was designed for small
portable devices. mSATA, shown in Figure 1-9, allows small SSD SATA drives
to attach directly to a mainboard without separate SATA cabling.

Figure 1-9: mSATA disk interface

Mainboards typically allow you to install SATA disks in either Advanced
Host Controller Interface (AHCI) mode or IDE mode. AHCI defines a stan-
dard SATA adapter interface here: http://www.intel.com/content/dam/www/
public/us/en/documents/technical-specifications/serial-ata-ahci-spec-rev1-3-1.pdf .
IDE mode provides a legacy disk interface for older OSes that don’t sup-
port the AHCI standard (old versions of Windows XP, for example). The
mode you use doesn’t affect the cryptographic hash of a forensic image. You
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can remove a disk from a subject PC in IDE mode, attach it to an examiner
machine in AHCI mode, and acquire it without data loss or modification.

Another interface, micro SATA (not to be confused with mSATA),
is shown in Figure 1-10. It was designed for 1.8-inch disk drives and slim
CD/DVD players but is less commonly used today. You can combine reg-
ular SATA write blockers with various adapters to acquire mSATA and
micro SATA drives.

Figure 1-10: Micro SATA disk interface

A more advanced form factor gaining in popularity is the M.2 inter-
face, shown in Figure 4-4. Introduced with the SATA 3.2 specification,
M.2 provides two standards in one interface. An M.2 card can use either
AHCI/SATA or NVMHCI/NVME interfaces, depending on compatibil-
ity requirements. When you’re using M.2 cards, be sure to confirm which
interface the card uses (as of this writing, most M.2 cards on the market use
ACHI/SATA mode).

Figure 1-11: M.2 disk interface
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The SATA Express disk interface, shown in Figure 1-12, eliminates sev-
eral layers of the SATA protocol stack, allowing storage (primarily SSDs)
to attach directly to the PCI Express bus. These drives continue to use the
AHCI standard and are different from NVME.

Figure 1-12: SATA Express disk interface

The SATA 3.2 specification supports two PCI Express lanes for 16Gbps
SATA Express speeds. Write blockers exist for PCI- and M.2-based SATA
Express drives.

Serial Attached SCSI and Fibre Channel
The parallel SCSI interface has largely disappeared in both consumer and
enterprise markets. SATA has replaced it in the consumer market, and
Serial Attached SCSI (SAS) and Fibre Channel (FC) have replaced it in the enter-
prise market. The physical connector of the SAS interface, shown in Fig-
ure 1-13, allows both SAS and SATA disks to be attached and accessed on
a SAS backplane. The physical connector on SAS disk drives is slightly dif-
ferent from that on SATA disks, and various fan-out connectors are available
for attaching multiple disks to the host bus adapter. The current speed of
SAS-3 disks is 12Gbps, twice that of SATA-3. SAS-4 will provide speeds of
22.5Gbps.

Figure 1-13: SAS disk interface
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A Mini-SAS HD 4i receptacle connector is shown in Figure 1-14.

Figure 1-14: SFF-8632/Mini-SAS HD interface

The SAS standard is maintained by the T10 technical committee of the
International Committee for Information Technology Standards (INCITS).
The current standards document is “Serial Attached SCSI -3 (SAS-3) INCITS
519-2014.” More information, including drafts of upcoming standards, is
available at http://t10.org/ .

SAS drives cannot be connected to SATA host bus adapters, and sepa-
rate SAS write blockers are needed to image SAS disks.

The Fibre Channel interface is often used to connect enterprise storage
arrays. Shown in Figure 1-15 are copper and optical-based Fibre Channel
connectors.

Figure 1-15: Fibre Channel interfaces

Hard disks with integrated Fibre Channel interfaces are becoming
legacy and have largely been replaced with SAS drives. As of this writing, no
hardware write blockers for Fibre Channel disk interfaces are available on
the market.
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Non-Volatile Memory Express
Non-Volatile Memory Express (NVME) was designed from the ground up as
an alternative to the AHCI-based SATA drive interface. It was designed
to attach directly to the PCI Express bus, eliminating the need for an
AHCI/SATA host bus adapter and the associated SATA physical interfaces
and protocol layers. The NVME architecture focuses specifically on SSD
storage, and a simpler, more efficient command set was created. NVME
devices can attach either directly to a mainboard in a PCIE slot, using the
PCIE NVMe mode of an M.2 interface, or with a U.2 (SFF-8639) interface.

The physical interface is directly attached to the PCIE bus, as shown in
Figure 1-16.

Figure 1-16: NVME SSD with a PCIE interface

An M.2 or Next Generation Form Factor (NGFF) version is also avail-
able. These are either directly inserted into mainboard M.2 slots or using
PCIE slot adapter cards, both with NVME mode (not AHCI/SATA mode).
Currently, most M.2 SSD disks are AHCI/SATA, not NVME, but this may
change because the performance benefits of NVME are compelling. Fig-
ure 1-17 shows an NVME M.2 disk.

Figure 1-17: NVME SSD with an M.2 interface
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The NVME U.2 interface (see Figure 1-18) allows drives with traditional
2.5-inch physical form factors to connect via cable or backplane. The U.2
(SFF-8639) interface and cable (mechanically similar to SAS but with addi-
tional pins for PCIE lanes) connect the drive enclosure to a mini-SAS HD
plug on an M.2 adapter, which is attached to the mainboard.

Figure 1-18: A 2.5-inch SSD with a U.2 interface, a U.2 to mini-SAS
HD cable, and a mini-SAS HD to M.2 adapter for a mainboard

NVME disks are not visible using typical SCSI or SATA command tools
because they don’t use SCSI or SATA commands. Linux tools designed to
interact with ATA or SCSI disk interfaces will generally not work with NVME
disks and require added support for compatibility. The device names for
NVME disks are not the familiar /dev/sd* files but /dev/nvme*n*. An NVME
device is created with an additional namespace number. The namespace,
denoted with n, is a lower layer (below the OS) allocation of space on an
NVME drive. The /dev/nvme*n* disk devices are block devices and should
function normally when applied to the Linux device file. For example, here
is the Sleuth Kit mmls command operating on an NVME disk:

# mmls /dev/nvme0n1

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000002047 0000002048 Unallocated

02: 00:00 0000002048 0781422767 0781420720 Linux (0x83)

#

As of this writing, the use of NVME is relatively new, and Tableau has
just created the first PCI Express forensic hardware write blocker with
NVME support. The difficulty intercepting NVME commands on the PCIE
bus makes write blockers expensive and complex to implement. For more
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information, see my paper “NVM Express Drives and Digital Forensics,”
which discusses this challenge in more detail.2

Universal Serial Bus
USB was created to consolidate and replace aging external peripheral inter-
faces, such as RS-232, the parallel printer interface, PS/2 keyboard and
mouse, and other proprietary PC interfaces. It was designed to accommo-
date multipurpose functionality, such as disks, keyboards, mice, sound,
network connections, printers and scanners, and connected small devices
(mobile phones and so on). A growing number of Internet-of-Things (IoT)
devices can be attached to a PC via USB and may contain data useful as
forensic evidence. Because the focus of this book is on the forensic acqui-
sition of mass storage devices, I’ll limit this discussion to USB mass storage
devices.

Flash drives, optical drives, some tape drives, and even magnetic hard
disks (see Figure 1-19) may have a USB interface directly integrated into the
drive electronics. The most common uses of the USB mass storage class are
the consumer USB stick, or thumb drive, and external hard disk enclosures.

Figure 1-19: A 1.8-inch magnetic hard disk with integrated
USB interface

The original USB protocol for the mass storage class of devices is known
as Bulk-Only Transport (BOT). BOT is currently the most common USB
transport protocol; however, with increasing disk speeds and the arrival of
USB3, the BOT protocol is becoming a bottleneck and may be replaced
by the USB Attached SCSI Protocol (UASP). Similar to AHCI for SATA,
USB also has a defined standard for the host controller interface. The
Extensible Host Controller Interface (xHCI) replaces several older USB
standards (in particular, OHCI, UHCI, and EHCI). Its specification can be

2. Bruce Nikkel, Digital Investigation 16 (2016): 38–45, doi:10.1016/j.diin.2016.01.001.
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found at http://www.intel.com/content/dam/www/public/us/en/documents/
technical-specifications/extensible-host-controler-interface-usb-xhci.pdf .

The latest USB interface for USB 3.1 is Type C, shown in Figure 1-20.
The Type C interface is multifunctional and can be used for USB 3.1 devices
and Thunderbolt 3 devices, and as a power supply. The physical plug is
reversible, meaning it does not have a top or bottom to align when plug-
ging in to a system.

Figure 1-20: USB Type C interface

External USB disk enclosures typically contain one or more SATA
drives. If feasible, you should remove SATA disks to gain direct access to the
ATA interface. This allows you to directly query the drive interface and may
have performance advantages in some cases (for example, USB 2.0 enclo-
sures containing a SATA disk).

Forensic write blockers designed specifically for imaging USB devices
exist and can be used for drives (flash or otherwise) that have integrated
USB interfaces.

Thunderbolt
Thunderbolt was developed jointly by Apple and Intel as a high-speed exter-
nal interface to connect disks, video displays, and PCI Express devices using
a single interface (see Figure 1-21). Using the code name Light Peak, it was
originally intended to be a fiber optic connection. The physical interface
uses Mini DisplayPort for Thunderbolt 1 and Thunderbolt 2, and it tran-
sitions to the USB Type C cable and connector for Thunderbolt 3. Apple
is largely responsible for the popularity of Thunderbolt (primarily among
Apple users), promoting it with Apple hardware. The Thunderbolt 3 inter-
face combines PCI Express, DisplayPort, and USB3 into a single interface.
Thunderbolt 1, 2, and 3 offer speeds of 10, 20, and 40Gbps, respectively.
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Figure 1-21: Thunderbolt interface

For Apple computer systems, you can use Target Disk Mode (TDM) with
Thunderbolt (as with FireWire) to make the system behave as an exter-
nal disk enclosure to another connected system. TDM instructs the Apple
firmware to make the internal disks available as block devices, which can
be accessed as external SCSI drives (useful when using forensic tools). I’ll
demonstrate the forensic acquisition of an Apple computer using TDM in
“Apple Target Disk Mode” on page 137.

Thunderbolt external disks typically contain one or more SATA drives.
In large thunderbolt RAID enclosures, the interface may use a SAS con-
troller together with multiple SATA or SAS disks.

The Linux dmesg output of an external disk attached with a Thunder-
bolt interface looks like this:

[ 53.408619] thunderbolt 0000:05:00.0: 0:1: hotplug: scanning

[ 53.408792] thunderbolt 0000:05:00.0: 0:1: is connected, link is up (state: 2)

[ 53.408969] thunderbolt 0000:05:00.0: initializing Switch at 0x1 (depth: 1,

up port: 1)

...

[ 53.601118] thunderbolt 0000:05:00.0: 1: hotplug: activating pcie devices

[ 53.601646] thunderbolt 0000:05:00.0: 0:6 <-> 1:2 (PCI): activating

...

[ 53.602444] thunderbolt 0000:05:00.0: path activation complete

[ 53.602679] pciehp 0000:04:03.0:pcie24: Card present on Slot(3-1)

[ 53.609205] pciehp 0000:04:03.0:pcie24: slot(3-1): Link Up event

...

[ 56.375626] ata7: SATA link up 6.0 Gbps (SStatus 133 SControl 300)

[ 56.382070] ata7.00: ATA-8: ST1000LM024 HN-M101MBB, 2BA30003, max UDMA/133

[ 56.382074] ata7.00: 1953525168 sectors, multi 0: LBA48 NCQ (depth 31/32), AA

[ 56.388597] ata7.00: configured for UDMA/133

[ 56.388820] scsi 7:0:0:0: Direct-Access ATA ST1000LM024 HN-M 0003 PQ: 0

ANSI: 5
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[ 56.389341] sd 7:0:0:0: Attached scsi generic sg2 type 0

[ 56.389342] sd 7:0:0:0: [sdc] 1953525168 512-byte logical blocks:

(1.00 TB/931 GiB)

[ 56.389345] sd 7:0:0:0: [sdc] 4096-byte physical blocks

[ 56.389408] sd 7:0:0:0: [sdc] Write Protect is off

[ 56.389413] sd 7:0:0:0: [sdc] Mode Sense: 00 3a 00 00

[ 56.389449] sd 7:0:0:0: [sdc] Write cache: enabled, read cache: enabled, doesn't

support DPO or FUA

[ 56.403702] sdc: [mac] sdc1 sdc2

[ 56.404166] sd 7:0:0:0: [sdc] Attached SCSI disk

At the time of this writing, the Linux kernel supports Thunderbolt
interfaces on Apple computers. Add-in cards for PC mainboards, such as
ASUS ThunderboltEX II, do not support the hot plugging of devices. How-
ever, booting the PC with the Thunderbolt disk attached allows the PC’s
BIOS/firmware to initialize the Thunderbolt adapter before the OS loads,
making external disks visible to the kernel.

As of this writing, no write blockers are on the market for Thunderbolt
interfaces. Also, no disks are currently available with directly integrated
Thunderbolt interfaces (enclosures only).

Legacy Interfaces
This section does not discuss the long history of computer disk interfaces;
instead, it briefly covers the recently obsoleted IDE, parallel SCSI, and
FireWire technologies. These interfaces may still be relevant in the con-
text of a forensic investigation as older hardware is discovered or seized as
evidence.

The IDE interface (see Figure 1-22) and Enhanced version (EIDE) typi-
cally used for 3.5-inch disks were popular interfaces until they were replaced
by SATA.

Figure 1-22: IDE disk interface
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The mini IDE interface (see Figure 1-23) was developed for 2.5-inch
disks for use in notebook computers until it was replaced by SATA.

Figure 1-23: Mini IDE disk interface

The micro IDE ZIF interface (see Figure 1-24) was developed for 1.8-
inch hard disks in sub-notebooks and other small electronic devices until it
was replaced by mSATA and M.2 interfaces.

Figure 1-24: Micro IDE ZIF interface

The FireWire, or IEEE1394, interface (see Figure 1-25) was developed
by Apple to provide a high-speed external bus to connect video equip-
ment and disk drives. This interface has largely been replaced by Thunder-
bolt and USB3.

Figure 1-25: Firewire interfaces

The parallel SCSI interface (see Figure 1-26) has largely disappeared
from the consumer market and has been replaced primarily by SATA (or
SAS in the enterprise market).
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Figure 1-26: SCSI interfaces

Forensic write blockers for IDE, SCSI, and FireWire are common and
also function with adapters for mini IDE, micro IDE ZIF, and various SCSI
interface adapters.

Commands, Protocols, and Bridges
The communication between storage devices and computer systems has
some conceptual similarities to LAN/WAN layered networking.3 The com-
munication between storage devices and computer systems can be similarly
organized into several layers of abstraction. There is a physical layer consist-
ing of cables, wires, and electrical signals. Above that, there is a link layer
where digital bits and bytes are transmitted in an organized manner using
frames or link layer packets. On top of the link layer, protocols and com-
mands are exchanged between a sender and receiver to request and receive
data. In previous sections, I described the physical connections and disk
interfaces. Here, I’ll describe the higher-layer command sets for ATA, SCSI,
and NVME. Figure 1-27 puts the different layers of abstraction into better
perspective.

ATA Commands
The current Advanced Technology Attachment (ATA) commands originally
evolved from the American National Standards Institute (ANSI) standard,
which defined the AT Attachment interface for disk drives.4 The original
standard described the physical interface (cables, pins, and so on), electrical

3. LAN/WAN layered networking is described by the Open Systems Interconnect (OSI) model’s
seven layers of abstraction in network communication.
4. AT Attachment Interface for Disk Drives, ANSI X3.221-199x, Revision 4c, X3T10, 1994.
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Application Layer
ATA/ATAPI and SCSI commands, SMART features

SCSI device-specific commands

Transport Layer
SATA Frame Information Structures (FIS), command queuing

SCSI transport for Fibre Channel, SAS, UASP

Link Layer
data framing, flow control, error handling

SATA primatives (X_RDY, T_RDY, etc.)
SCSI Interconnects (SPI, SAS, Fibre Channel, etc.)

Physical Layer
connectors, cables, electrical signals,

hardware initialization, PHY components

Figure 1-27: Abstraction layers as applied to disk interfaces

signals, and logical commands that could be issued. The current standard5

describes feature sets that drives may have and the ATA commands available
to control each drive. The ATA Packet Interface (ATAPI) adds a packet
command feature set to the ATA standard, allowing additional commands
not specific to disk drive functionality (for example, ejecting media, encap-
sulating SCSI commands, and so on).

The ATA Command Set (ACS) defines a set of commands and parame-
ters that can be loaded into ATA registers and sent to a drive for execution.
Some common ATA commands are shown in Table 1-1.

Table 1-1: Common ATA Commands

Command Command code

DEVICE RESET 08h
READ SECTOR(S) 20h
WRITE SECTOR(S) 30h
SEEK 70h
DOWNLOAD MICROCODE 92h
MEDIA EJECT EDh
SECURITY UNLOCK F2h

A number of ATA and ATAPI commands can be issued using the
hdparm and smartctls utilities. T13 (http://t13.org/) publishes the standard
that defines the full set of commands. You can find additional resources at
http://sata-io.org/ .

5. ATA/ATAPI Command Set - 2 (ACS-2), Revision 2.
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Understanding the basic operation of ATA/ATAPI commands provides
the background knowledge you need to understand how SATA and IDE
forensic write blockers function (preventing ATA/ATAPI commands from
modifying disks). Knowing how these commands operate also improves your
understanding of how a forensic examiner can query the attributes of a disk
and ultimately perform a successful forensic acquisition.

SCSI Commands
SCSI commands from a host bus adapter to a disk follow a client/server
model. The host bus adapter (HBA) is the client, or initiator, and the disk is
the server, or target. The initiator sends commands (possibly together with
data) to the target, and the target returns a response (possibly together
with data). SCSI was originally designed for use with a variety of devices,
including scanners, tapes, printers, and so on, not just hard disks. There-
fore, SCSI has a rich command set. Commands are sent from the initiator
(HBA) to the target (drive) using a command descriptor block (CDB), which
is a block of data containing the command and its parameters. The target
receives the CDB, carries out the request, and returns a response. The inter-
action is somewhat similar to a UDP-based request/response in a TCP/IP
client/server architecture.

SCSI commands exist to read and write blocks of data from/to a disk,
control hardware (ejecting CDs or changing tapes), report status and diag-
nostic information, and so on. These commands are generally hidden from
the end user, but various utilities are available to issue SCSI commands from
user space. It’s even possible to submit arbitrary commands from the Linux
command line using tools from the sg3_utils software package. For example,
the following command submits a low-level SCSI command to read the first
sector of a SCSI disk:

# sg_raw -r 512 /dev/sda 08 00 00 00 01 00

SCSI Status: Good

Received 512 bytes of data:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

...

1a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

1b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

1c0 02 00 ee ff ff ff 01 00 00 00 ff ff ff ff 00 00 ................

1d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

1e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

1f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa ..............U.

In this example sg_raw is given a CDB command to be sent to /dev/sda, a
SAS disk. The first byte, 0x08, specifies the 6-byte long SCSI READ command.
The subsequent zeros specify the LUN and starting sector. The 0x01 specifies

36 Chapter 1



the number of sectors to read, and -r 512 tells sg_raw how many bytes to
display. This example should also work on SAS-, SATA-, and USB-attached
drives.

Technical standards for SCSI and SAS commands are maintained
by the Technical Committee T10 of INCITS (InterNational Committee
for Information Technology Standards). You can find these standards at
http://t10.org/ . Books on SCSI programming are useful to better understand
the SCSI command protocol.

Understanding the basic operation of SAS/SCSI commands is relevant
to this book. It provides the background knowledge to understand how
SAS/SCSI forensic write blockers function (preventing SAS/SCSI com-
mands from modifying disks). Knowing how SAS/SCSI commands operate
improves your understanding of how a forensic examiner can query the
attributes of a disk and ultimately perform a forensic acquisition.

SCSI commands are also used to control tapes and optical devices.

NVME Commands
The NVME command set was created from scratch without providing back-
ward compatibility for existing SCSI or ATA command sets. It was designed
to support SSD media directly attached to the PCI express bus and to take
advantage of parallelization with multiple CPUs and instant SSD seek times
(no latency overhead from moving disk heads). The standard’s developers
also recognized that with the drive connected directly to the PCIE bus, much
of the protocol overhead in ATA or SCSI could be eliminated. A new mini-
mal command set was created, free of legacy commands or backward com-
patibility requirements. The performance and efficiency of NVME drives is
a significant improvement over SATA or SAS. An extensive command queu-
ing system provides up to 64k queues able to hold 64k commands each (in
contrast, SATA had 32 queues with one command each).

A translation reference between SCSI and NVME commands is available
at http://nvmexpress.org/ . Table 1-2 shows the more common examples.

Table 1-2: SCSI and NVME Command Comparison

SCSI NVME

COMPARE AND WRITE Compare and Write
READ Read
WRITE Write
WRITE BUFFER Firmware Image Download, Firmware Image Activate
INQUIRY Identify
READ CAPACITY Identify
REPORT LUNS Identify
MODE SENSE Identify, Get Features
LOG SENSE Get Features, Get Log Page
SYNCHRONIZE CACHE Flush
FORMAT UNIT Format NVM
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Disk devices can be attached to a PC system through various bus systems
and bridges. Performance can be increased by attaching the drive as close
as possible to the CPU and memory. Today, the closest a drive can get to
the CPU and memory is through dedicated lanes of the PCI express 3.0
bus using the NVME interface (RAM disks are faster and more efficient,
but they are created by the OS and are not non-volatile storage media
devices). An NVME device can be directly attached to the CPU without
using a southbridge chipset or any traditional disk protocol overhead, such
as ATA or SCSI.

Bridging, Tunneling, and Pass-Through
ATA and SCSI are the two most common protocols for interacting with stor-
age media. The commands can be sent over a variety of physical layer buses
or transport layers, or even tunneled or encapsulated within other protocols.
This complexity is hidden from the user, and attached devices can simply
be accessed through standard block devices that the Linux kernel makes
available.

To illustrate, consider a SATA hard disk plugged into a stand-alone
USB docking station, which is plugged into an external port of a USB3
PCI express card installed in a PC. The communication between the disk
interface and the dock is a lower-layer SATA protocol, using SATA Frame
Information Structures (FIS) packets. The communication between the
dock and the USB3 card is a lower-layer USB protocol, using BOT or USAP.
The communication between the USB3 card and the PC is a lower-layer
PCI express protocol, using PCIE Transaction Layer Packets (TLP) and
Data Link Layer Packets (DLLP). Finally, the disk is accessed across all
these bridges using the SCSI command protocol. In this example, multiple
physical and link layers are used to connect the disk. To the user, the disk
appears directly accessible, and the lower protocol layers are hidden or
abstracted from view.

NOTE FIS are part of the SATA protocol. PCI Express has its own set of protocols, which
include TLP and DLLP.

For each of the different physical buses, a device called a PHY (for phys-
ical) facilitates communication between devices connected to a bus (the
PHYs on a bus work a bit like two modems communicating over a WAN
cable). The PHY converts the digital ones and zeros into compliant electrical
signals expected for that bus. After the PHY has taken care of the physical
layer, a link layer protocol manages the stream of bits/bytes that is being
transferred back and forth on the bus. This link layer organizes the data
stream into frames or discrete packets of information that upper layers can
process.

There are physical and link layer descriptions for USB, PCIE, Thunder-
bolt, SAS, SATA, Fibre Channel, and so on. Typically, standards exist that
allow generic OS drivers to use the physical hardware in a device-independent
way. For example, USB adapters are defined by the xHCI standard, SATA
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adapters are defined by the AHCI standard, NVME devices are defined by
the NVMHCI standard (now simply called the NVME standard), and so on.
Compliance with these standards allows hardware to be supported without
the need for additional proprietary drivers.

Although ATA/ATAPI and SCSI are distinct command sets, they both
support some degree of tunneling and pass-through of each other’s com-
mands. ATA uses the ATAPI interface to encapsulate SCSI commands for
communication with devices, such as optical drives, tape drives, and other
devices that understand SCSI commands for ejecting media and other com-
mands not found in the ATA protocol. SCSI supports ATA pass-through,
which allows ATA commands to be sent over the SCSI protocol. SAT (SCSI-
ATA Translation) creates a bilateral translation between SCSI and ATA com-
mands where the commands interact with storage media. This translation
is implemented as a Linux kernel API within the libata library. (The libata
library, sometimes spelled libATA, provides a number of features for interfac-
ing with ATA controllers and devices.)

Bridges play an important role in forensic acquisition because they’re
the basis for implementing hardware write blockers. A hardware write blocker
is typically a bridge capable of intercepting ATA or SCSI commands sent to
the disk, preventing commands from modifying sectors on a disk.

Special Topics
This section covers a number of special topics related to mass storage and
digital forensics. Some areas, such as UASP and SSHD, are briefly com-
mented on regarding their relevance to digital forensics. Other areas, such
as DCO, HPA, and NVME drives, are introduced here and discussed in more
detail later in the book.

DCO and HPA Drive Areas
As the ATA/ATAPI standards evolved, certain features were created to ben-
efit system vendors. The Host Protected Area (HPA) was introduced in the
ATA/ATAPI-4 standard and allowed system vendors to reserve portions
of the disk for use outside the normal OS. For example, the HPA can be
used to store persistent data, system recovery data, hibernation data, and
so on. Access to this data is controlled by the system firmware rather than
the installed OS. The Device Configuration Overlay (DCO) feature was intro-
duced in the ATA/ATAPI-6 standard and provided the ability to control
reported disk features and capacity. This allowed system vendors to ship
disks from multiple manufacturers while maintaining identical numbers of
user-accessible sectors and features across the disks. This facilitated easier
support and drive replacement. Both the HPA and DCO can coexist; how-
ever, the DCO must be created first, followed by the HPA.

The HPA and DCO have been misused by criminals and malicious
actors to hide illicit files and malware code. I describe how to detect and
remove the HPA and DCO, revealing sectors hidden from normal user
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view, in “Enable Access to Hidden Sectors” on page 118. You’ll find a more
detailed description of the HPA and DCO related to forensics in the paper
“Hidden Disk Areas: HPA and DCO.”6 Information is also available about
nation state exploitation using the HPA at https://www.schneier.com/blog/
archives/2014/02/swap_nsa_exploi.html and https://leaksource.files.wordpress
.com/2013/12/nsa-ant-swap.jpg.

Drive Service and Maintenance Areas
Certain maintenance areas of a hard disk are generally not accessible using
standard Linux tools. These areas contain bad sectors lists and vendor ser-
vice sectors (sometimes referred to as negative sectors). To access these
areas of the disk, you’ll need specialized disk diagnostic software and hard-
ware. I show an example of accessing the service area of a disk and pro-
vide some additional resources in “Drive Service Area Access” on page 122.
Don’t confuse the service area of a disk with the HPA or DCO. You can easily
access HPA and DCO areas using standard ATA commands and methods,
but not the service areas of a disk.

USB Attached SCSI Protocol
USB provides two modes for accessing mass storage class devices: the more
common BOT and the newer UASP. With the increased speeds of USB3 and
USB3.1, a new and more efficient USB mass storage class transport protocol
was developed called USB Attached SCSI Protocol (UASP). This new protocol is
also referred to as UAS and the product-marketing nicknames USB3 Boost,
USB3 Turbo, or USB3 Extreme are sometimes used. You’ll find more infor-
mation at http://usb.org/ and http://t10.org/ , the organizations that jointly
developed the standard. UASP improves performance by providing com-
mand queuing and asynchronous processing and by improving task and
command control capability.

The dmesg output of an attached UASP-enabled USB disk uses the uas

protocol for operation:

[15655.838498] usb 2-6.2: new SuperSpeed USB device number 6 using xhci_hcd

...

[15655.952172] scsi host14: uas

...

[15666.978291] sd 14:0:0:0: [sdk] 3907029168 512-byte logical blocks:

(2.00 TB/1.81 TiB)

...

[15667.033750] sd 14:0:0:0: [sdk] Attached SCSI disk

6. Mayank R. Gupta, Michael D. Hoeschele, and Marcus K. Rogers, “Hidden Disk Areas:
HPA and DCO,” International Journal of Digital Evidence 5, no. 1 (2006), https://www.utica.edu/
academic/institutes/ecii/publications/articles/EFE36584-D13F-2962-67BEB146864A2671.pdf.

40 Chapter 1

https://www.schneier.com/blog/archives/2014/02/swap_nsa_exploi.html
https://www.schneier.com/blog/archives/2014/02/swap_nsa_exploi.html
http://usb.org/
http://t10.org/
https://www.utica.edu/academic/institutes/ecii/publications/articles/EFE36584-D13F-2962-67BEB146864A2671.pdf
https://www.utica.edu/academic/institutes/ecii/publications/articles/EFE36584-D13F-2962-67BEB146864A2671.pdf
https://leaksource.files.wordpress.com/2013/12/nsa-ant-swap.jpg
https://leaksource.files.wordpress.com/2013/12/nsa-ant-swap.jpg


In contrast, the same disk connected with a traditional BOT USB inter-
face loads the usb-storage protocol for operation:

[15767.853288] usb 2-6.2: new SuperSpeed USB device number 7 using xhci_hcd

...

[15767.918079] usb-storage 2-6.2:1.0: USB Mass Storage device detected

[15767.918195] usb-storage 2-6.2:1.0: Quirks match for vid 174c pid 55aa: 400000

[15767.918222] scsi host15: usb-storage 2-6.2:1.0

...

[15777.728944] sd 15:0:0:0: [sdk] 3907029168 512-byte logical blocks:

(2.00 TB/1.81 TiB)

...

[15777.820171] sd 15:0:0:0: [sdk] Attached SCSI disk

From a forensics perspective, it’s important to note that the transport
protocol used does not affect the contents of the USB disk and has no effect
on the cryptographic hash of the forensic image. In fact, it is advantageous
to use UAS-based write blockers for the performance benefits (Tableau
USB3 write blockers use UAS, for example).

NOTE One word of advice: when you’re using the higher speeds of USB3, the quality of the
USB cables becomes an issue. Longer, lower-quality USB3 cables can produce read
errors during acquisition. For those working in a professional forensic laboratory, it’s
worth investing in short, high-quality USB3 cables.

Advanced Format 4Kn
As disk capacities increased, the industry discovered that it could improve
disk efficiency by switching from 512-byte sectors to 4096-byte sectors. The
International Disk Drive Equipment and Materials Association (IDEMA)
developed the Advanced Format standard for 4096-byte physcial sectors (see
http://www.idema.org/?page_id=2369). Since 2009, hard disk manufacturers
have committed to using IDEMA’s Advanced Format standard to produce
4K sector disks. Even with 4K physical sectors, most disks today emulate 512-
byte sectors and are called Advanced Format 512e disks. Disks that provide
the host system and OS with native 4K-sized sectors are called Advanced
Format 4Kn disks. Advanced Format 4Kn disks are still rare in the low-end
marketplace but are used in enterprise environments. For higher-capacity
enterprise disks, most enterprise disk manufacturers offer two models: 512e
and 4Kn. Figure 1-28 shows the official logo for 4Kn disks.

You’ll find a good overview of Advanced Format and 4K sectors on
YouTube at https://www.youtube.com/watch?v=TmH3iRLhZ-A/ .
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Figure 1-28: Advanced Format 4Kn logo

When the Linux kernel detects an attached disk, it displays the number
of sectors and the logical sector size (in some cases, it may also explicitly
display the physical size). The following partial dmesg output shows two
equal-sized disks, one with Advanced Format 512e and the other with 4Kn.
Dividing the number of 512-byte sectors by 8 or multiplying the number of
4K sectors by 8 shows the disks are equal in capacity but have different sector
counts.

...

[ 13.605000] scsi 1:0:1:0: Direct-Access TOSHIBA MG03SCA300 0108 PQ: 0

ANSI: 5

...

[ 16.621880] sd 1:0:1:0: [sdb] 5860533168 512-byte logical blocks: (3.00 TB/2.73

TiB)

...

[ 14.355068] scsi 1:0:2:0: Direct-Access ATA TOSHIBA MG04ACA3 FP2A PQ: 0

ANSI: 6

...

[ 16.608179] sd 1:0:2:0: [sdc] 732566646 4096-byte logical blocks: (3.00 TB/2.73

TiB)

On a Linux system, you can use the /sys pseudo filesystem to find the
logical and physical sector sizes of a disk. For example, you can determine
the physical and logical sector sizes of the attached disk /dev/sda as follows:

# dmesg

...

[ 16.606585] sd 1:0:0:0: [sda] 7814037168 512-byte logical blocks: (4.00 TB/3.64

TiB)

...
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# cat /sys/block/sda/queue/logical_block_size

512

# cat /sys/block/sda/queue/physical_block_size

4096

# blockdev --getpbsz /dev/sda

4096

# blockdev --getss /dev/sda

512

These two methods show reading from the /sys pseudo filesystem (which
you can also do as a non-root user) and using the blockdev command.

Some SSDs allow you to choose the physical sector size with a firm-
ware tool. For example, some recent Intel SSDs can change sector size
between 512 and 4096 using a command line tool provided by Intel (https://
downloadcenter.intel.com/download/23931/).

Several aspects of 4K disks are of interest to the digital forensics com-
munity and are discussed in the rest of this section. Some early Western
Digital Advanced Format 512e disks had a jumper setting (jumpers 7 and 8)
to internally offset the sectors to align the beginning of default XP partitions
with the start of a 4K sector. This jumper setting to realign the disk greatly
improved performance. Changing such sector alignment jumpers will affect
forensic acquisition hash and potentially affect the analysis of a disk. When
forensically imaging or verifying a disk, it is crucial to use the same jumper
settings as when the drive was first seized.

The use of 4Kn disks will affect the value of slack space. RAM slack or
memory slack is the unused part of the last sector of a file (not to be con-
fused with file slack, which is the unused part of the last filesystem block of a
file). When you’re using 4Kn disks with filesystems that use 4K blocks, the
RAM slack and file slack are the same. OSes that pad the unused portion
of a 4K sector with zeros before writing will eliminate the possibility of any
useful data in file slack on filesystems with 4K blocks.

Forensic software that assumes a 512-byte sector size may fail or, worse,
produce incorrect results. When you’re using 4Kn disks, it’s important to
confirm that the forensic software recognizes and uses 4Kn sectors. Sleuth
Kit will default to 512-byte sectors and must be explicitly told to use 4K sec-
tors for 4Kn disks. The following example shows mmls producing incorrect
results by default and correct results when specifying the correct sector size.

# mmls /dev/sde

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000000255 0000000256 Unallocated

02: 00:00 0000000256 0732566645 0732566390 Linux (0x83)

03: ----- 0732566646 5860533167 5127966522 Unallocated
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...

# mmls -b 4096 /dev/sde

DOS Partition Table

Offset Sector: 0

Units are in 4096-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000000255 0000000256 Unallocated

02: 00:00 0000000256 0732566645 0732566390 Linux (0x83)

#

After specifying the 4096-byte sector size with the -b flag, the sectors of
the Linux partition are represented as 4K units, and there is no unallocated
area at the end of the drive. An example of successfully acquiring a native
4K sector disk is shown in “The dcfldd and dc3dd Tools” on page 144.

The use of Advanced Format 4Kn disks is still uncommon. It’s unclear
how 4Kn sector disks will impact existing forensic acquisition and analysis
software currently on the market, in particular where forensic tools funda-
mentally assume a 512-byte sector size. This is an area where more research
by the digital forensics community is needed.

NVME Namespaces
The NVME specification introduces the concept of namespaces, which allow
you to partition a drive at a lower layer, abstracted from the normal OS.
Forensic imaging of a drive with multiple namespaces must be done sepa-
rately for each namespace. You can determine the number of namespaces
in several ways.

By sending an identify controller admin command using the nvme-cli
tool, you can check the number of namespaces supported and used. The
following example shows various information about namespace support:

# nvme id-ctrl /dev/nvme1 -H

NVME Identify Controller:

vid : 0x144d

ssvid : 0x144d

sn : S2GLNCAGA04891H

mn : Samsung SSD 950 PRO 256GB

fr : 1B0QBXX7

...

oacs : 0x7

[3:3] : 0 NS Management and Attachment Not Supported

...

[0:0] : 0x1 SMART/Health Log Page per NS Supported

...

nn : 1

...
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Here, Optional Admin Command Support (OACS) indicates that
namespace management is not supported on this particular drive. The
Number of Namespaces field (nn) shows the number of namespaces on the
controller—one on this particular device.

You can also check the size of the namespace by using nvme-cli and
compare it with the manufacturer’s specifications, as follows:

# nvme id-ns /dev/nvme0n1

NVME Identify Namespace 1:

nsze : 0x2e9390b0

ncap : 0x2e9390b0

nuse : 0x2e9390b0

...

Here, nsze refers to the namespace size, ncap is the namespace capacity,
and nuse is the namespace utilization. If these values match the vendor’s
documented drive size, they confirm that a single namespace is being used.

A third check for the existence of multiple namespace devices can be to
simply list the devices (/dev/nvme0n2*, /dev/nvme0n3*, and so on) detected
by the OS.

As of this writing, there were no consumer drives available for testing
that supported multiple namespaces. The information in this section is
derived from the NVME specification and tool documentation.

Solid State Hybrid Disks
A hybrid of a solid state and traditional magnetic disk was developed to
provide larger disk capacities, with performance comparable to SSDs, at
an affordable price.

These hybrid drives, known as Solid State Hybrid Disks (SSHDs), provide
additional solid state caching of frequently used sectors. SSHDs can operate
fully independently of the OS or accept “hints” from the OS to help decide
which blocks to cache.

As of SATA 3.2, a hybrid information feature has been added to allow
a host to communicate caching information to a hybrid drive using ATA
commands.

To date, little research has been done on the forensics of SSHDs, and
the implications for acquisition are unclear. SSHDs contain a small SSD disk
that must perform wear leveling. A hybrid drive that does not support TRIM
commands is not likely to erase data in unallocated filesystem blocks.

The hybrid systems described here are built into the electronics of a
single drive. It is also possible to have a hybrid system with two separate
drives: a smaller SSD and a larger magnetic hard drive. Using OS drivers or
proprietary systems such as Intel’s Smart Response Technology, equivalent
hybrid caching is achieved.
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Closing Thoughts
In this chapter, I reviewed the various types of storage media—magnetic,
non-volatile, and optical—and I examined different drive types. I described
internal and external interfaces for attaching storage devices to a examiner
host system. I also explained the protocols used to access the drives and cov-
ered a number of less common specialty topics. I presented the material in
this chapter from the perspective of a forensic examiner. You should now
have a solid foundation for understanding the next chapter on using Linux
as a forensic acquisition platform.
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2
LINUX AS A FORENSIC

ACQUISITION PLATFORM

This chapter describes Linux as a plat-
form for performing digital forensic acqui-

sition and discusses its various advantages
and drawbacks. I also examine the acceptance

of Linux and open source software within the digital
forensics community, and the final section provides
an overview of the relevant Linux fundamentals you’ll
need to understand subsequent sections of this book.

The examples shown in this book primarily use Ubuntu Linux Server
version 16.04 LTS (supported until April 2021) with the Bourne Again
shell (Bash), version 4.3.x. The examples should also work on other
Linux distributions and other OSes, such as OS X or Windows, as long
as you use the same or newer tool versions and adjust the device names.
Throughout this book, the words command line, shell, and Bash are used
interchangeably.



Linux and OSS in a Forensic Context
The growing popularity of open source software (OSS) like Linux has made it
important as a platform for performing digital forensics. Many researchers
have discussed the advantages of using OSS for satisfying the Daubert guide-
lines for evidential reliability.1 Brian Carrier, author of Sleuth Kit, explored
the legal arguments for using open source forensic tools and suggested that
parts of forensic software (but not necessarily all) should be made open
source.2

The primary advantage of using OSS in a forensic context is trans-
parency. Unlike proprietary commercial software, the source code can be
reviewed and openly validated. In addition, academic researchers can study
it and build on the work of others in the community. Open source forensic
software applications have become the tools and building blocks of forensic
science research. There are also disadvantages to using OSS and situations
where its use doesn’t make sense. In particular, the openness of the open
source community may in some cases conflict with the confidential nature
of ongoing forensic investigations. Both the advantages and disadvantages of
Linux and OSS are discussed in the following sections.

Advantages of Linux and OSS in Forensics Labs
The public availability of OSS means it is accessible to everyone. It is not
restricted to those who have purchased licenses or signed nondisclosure
agreements. OSS is freely available for download, use, examination, and
modification by anyone interested, and no licensing fees or usage costs are
involved.

Having access to the source code allows you to customize and facili-
tate integration with other software, hardware, and processes in a forensic
lab. This source-level access increases the possibilities for automating and
scripting workloads. Automation reduces the amount of human interaction
needed, which limits the risk of human error and frees up these human
resources so they can be used elsewhere.

Automation is essential in labs with high volumes of casework to foster
optimization and process streamlining. Because you can freely modify the
source code, OSS can be customized to meet the requirements of a partic-
ular forensic lab. Command line software especially allows you to link mul-
tiple tasks and jobs in pipelines with shell scripts to complete an end-to-end
process.

Support for OSS has several advantages. The ad hoc community support
can be excellent, and mailing lists and chat forums can answer calls for help
within minutes. In some cases, quick implementation of patches, bug fixes,
and feature requests can occur.

1. Erin Kenneally, “Gatekeeping Out of the Box: Open Source Software as a Mechanism to
Assess Reliability for Digital Evidence,” Virginia Journal of Law and Technology 6, no. 13 (2001).
2. Brian Carrier, “Open Source Digital Forensic Tools: The Legal Argument” [technical report]
(Atstake Inc., October 2002).
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Linux and OSS are ideal for an academic forensic lab setting, because
they use open, published standards rather than closed or proprietary stan-
dards. OSS development communities work with competing groups instead
of against them. Learning from others, copying code and ideas from others
(with due attribution), and building on the work of others are encouraged
and are the basis for learning and gaining knowledge.

The vendor independence that OSS offers prevents vendor product
lock-in and fosters interoperability and compatibility between technologies
and organizations. This makes it easier to change the software over time,
because individual components can be swapped out with new or alternative
technologies without affecting the systems and processes as a whole.

Disadvantages of Linux and OSS in Forensics Labs
The disadvantages of Linux and OSS provide arguments in support of closed
proprietary software. Commercial tool implementations often provide bene-
fits and advantages in this area.

The open source community support model is not guaranteed to be
reliable, accurate, or trustworthy. The quality of the answers provided by
the community can vary greatly; some answers are excellent, whereas others
might be wrong or even dangerous. Often no formal support organization
exists to help. In situations in which 24/7 support must be guaranteed, com-
mercial providers have an advantage.

Support in the open source world is as transparent as the software,
visible for all to see. However, in a forensic lab setting, casework and inves-
tigations may be sensitive or confidential. Reaching out to the public for
support could reveal or compromise details of an ongoing investigation.
Therefore, information security and privacy are issues in the open source
support model.

Interoperability with proprietary technology poses difficulties with open
source interfaces and APIs. Proprietary technologies that are not public are
often reverse engineered, not licensed. Reverse engineering efforts are often
incomplete, are at risk of incorrectly implementing a particular technology,
and may take a long time to implement.

Free OSS is often a volunteer development effort, and software may be
in a perpetual state of development. Some projects may be abandoned or
die from neglect. Other projects may experience forks in the code where
some developers decide to copy an existing code base and take it in a differ-
ent direction from the original developers.

Free OSS can be rough around the edges. It may be buggy or difficult
to learn or use. It may be poorly documented (the source code might be the
only documentation). Unlike with commercial software, usually no train-
ing is provided with the software product. It takes time and effort to learn
Unix/Linux; in particular, the command line is not as intuitive as an all-GUI
environment. Many experience a learning curve when they first enter the
free, open source world, not just for the software but also for the general
attitude and mind-set of the surrounding community.
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Commercial software vendors in the forensics community provide a
certain degree of defensibility and guarantees for the proper functioning
of their software. Some forensic companies have even offered to testify in
court to defend the results provided by their software products. In the free,
open source community, no one is accountable or will take responsibility for
the software produced. It is provided “as is” and “use at your own risk.”

Clearly, OSS is not appropriate for every situation, and that is not
implied in this book. In many of the examples throughout, OSS is more
useful for educational purposes and to show how things work than it is a
viable alternative to professional commercial forensic software.

Linux Kernel and Storage Devices
Traditional Unix systems, from which Linux inherits its philosophy, were
designed in a way that everything on them is a file. Each file is designated
as a specific type, which includes regular files and directories, block devices,
character devices, named pipes, hard links, and soft/symbolic links (similar
to LNK files in Windows). On the examiner workstation, files of interest to
forensic investigators are the block device files of attached subject disks that
potentially contain forensic evidence. This section describes Linux devices—
in particular, block devices for storage media.

Kernel Device Detection
Unix and Linux systems have a special directory called /dev, which stores
special files that correspond to devices understood by the kernel. Original
Unix and Linux systems required manual creation of device files in the
/dev directory (using the mknod command) or had scripts (MAKEDEV) to create
devices on boot or when required. With the arrival of plug-and-play hard-
ware, a more dynamic approach was needed, and devfs was created to auto-
matically detect new hardware and create device files. The requirement to
interact better with userspace scripts and programs led to the development
of udev, which replaced devfs. Today, udev has been merged into systemd and
runs a daemon called systemd-udevd.

When a new device is attached to (or removed from) a host, an inter-
rupt notifies the kernel of a hardware change. The kernel informs the udev

system, which creates appropriate devices with proper permissions, executes
setup (or removal) scripts and programs, and sends messages to other dae-
mons (via dbus, for example).

To observe udev in action, use the udevadm tool in monitor mode:

# udevadm monitor

monitor will print the received events for:

UDEV - the event that udev sends out after rule processing

KERNEL - the kernel uevent

KERNEL[7661.685727] add /devices/pci0000:00/0000:00:14.0/usb1/1-14 (usb)

KERNEL[7661.686030] add /devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0
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(usb)

KERNEL[7661.686236] add /devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0/

host9 (scsi)

KERNEL[7661.686286] add /devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0/

host9/scsi_host/host9 (scsi_host)

...

KERNEL[7671.797640] add /devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0/

host9/target9:0:0/9:0:0:0/block/sdf (block)

KERNEL[7671.797721] add /devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0/

host9/target9:0:0/9:0:0:0/block/sdf/sdf1 (block)

...

Here a disk has been plugged into a USB port, and udev has managed
the setup of all the appropriate device files and links.

The udevadm command can also be used to determine a list of the associ-
ated files and paths for attached devices. For example:

# udevadm info /dev/sdf

P: /devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0/host9/target9:0:0/9:0:0:0/

block/sdf

N: sdf

S: disk/by-id/ata-ST2000DL003-9VT166_5YD83QVW

S: disk/by-id/wwn-0x5000c50048d79a82

S: disk/by-path/pci-0000:00:14.0-usb-0:14:1.0-scsi-0:0:0:0

E: DEVLINKS=/dev/disk/by-path/pci-0000:00:14.0-usb-0:14:1.0-scsi-0:0:0:0 /dev/disk/

by-id/wwn-0x5000c50048d79a82 /dev/disk/by-id/ata-ST2000DL003-9VT166_5YD83QVW

E: DEVNAME=/dev/sdf

E: DEVPATH=/devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0/host9/target9:0:0/

9:0:0:0/block/sdf

E: DEVTYPE=disk

E: ID_ATA=1

...

Understanding the Linux device tree is important when you’re perform-
ing forensic acquisition and analysis activities. Knowing which devices are
part of a local investigator’s machine, which devices are the suspect drives,
which device is the write blocker, and so on is crucial when you’re running
forensic commands and collecting information from a device.

Storage Devices in /dev
Attached drives will appear as block devices in the /dev directory when
they’re detected by the kernel. Raw disk device files have a specific nam-
ing convention: sd* for SCSI and SATA, hd* for IDE, md* for RAID arrays,
nvme*n* for NVME drives, and other names for less common or proprietary
disk device drivers.

Individual partitions discovered by the kernel are represented by
numbered raw devices (for example, hda1, hda2, sda1, sda2, and so forth).
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Partition block devices represent entire partitions as a contiguous sequence
of disk sectors. A partition typically contains a filesystem, which can be
mounted by the kernel and made available to users as a normal part of the
directory tree. Most forensic tools can (and should) examine raw devices
and partition devices without having to mount the filesystem.

Other Special Devices
Several other devices are useful to know for the examples in this book.
The bit bucket, /dev/null, discards any data written to it. A steady stream
of zeros is provided when accessing /dev/zero. The random number gener-
ator, /dev/random, provides a stream of random data when accessed. Tape
drives typically start with /dev/st, and you can access other external media via
/dev/cdrom or /dev/dvd (these are often symbolic links to /dev/sr*). In some
cases, devices are accessed through the generic SCSI device driver interface
/dev/sg*.

Other special pseudo devices include /dev/loop* and /dev/mapper/*
devices. These devices are discussed in more detail throughout the book.

Linux Kernel and Filesystems
Filesystems organize storage into a hierarchical structure of directories
(folders) and files. They provide a layer of abstraction above the block
devices.

Kernel Filesystem Support
The Linux kernel supports a large number of filesystems (for a list, see
https://en.wikipedia.org/wiki/Category:Linux_kernel-supported_file_systems),
which can be useful when performing some forensics tasks. However, file-
system support is not necessary when performing forensic acquisition,
because the imaging process is operating on the block device below the
filesystem and partition scheme.

To provide a consistent interface for different types of filesystems, the
Linux kernel implements a Virtual File System (VFS) abstraction layer.
This allows mounting of regular storage media filesystems (EXT*, NTFS,
FAT, and so on), network-based filesystems (nfs, sambafs/smbfs, and so
on), userspace filesystems based on FUSE,3 stackable filesystems (encryptfs,
unionfs, and so on), and other special pseudo filesystems (sysfs, proc, and
so on).

The Linux Storage Stack Diagram, shown in Figure 2-1, helps you
understand the relationship among filesystems, devices, device drivers, and
hardware devices within the Linux kernel.

3. FUSE is a userspace filesystem implementation (see https://en.wikipedia.org/wiki/Filesystem_in_
Userspace).
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Figure 2-1: The Linux Storage Stack Diagram (https://www.thomas-krenn.com/en/wiki/
Linux_Storage_Stack_Diagram, used under CC Attribution-ShareAlike 3.0 Unported)

Mounting Filesystems in Linux
An often-misunderstood concept is the difference between an attached disk
device and a mounted disk device. A device does not need to be mounted to
acquire it or even to access it with forensic analysis tools. Forensic tools that
operate directly on block devices will have access to attached disks without
mounting them through the OS.
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Filesystems that reside on disk devices in Unix and Linux require
explicit mounting before being accessible as a regular directory structure.
Mounting a filesystem simply means it is made available to use with standard
file access tools (file managers, applications, and so on), similar to drive
letters in the DOS/Windows world. Linux doesn’t use drive letters; mounted
disks become part of the local filesystem and are attached to any chosen part
of the filesystem tree. This is called the filesystem’s mount point. For example,
the following command mounts a USB stick on an investigator system using
(/mnt) as the mount point:

# mount /dev/sdb1 /mnt

To physically remove a mounted disk in Linux, unmount the filesystem
first to prevent corruption of the filesystem. You can use the umount com-
mand (that is umount, not unmount) with either the device name or the mount
point. These two commands perform the same action to unmount a disk
filesystem:

# umount /dev/sdb1

# umount /mnt

After the filesystem is unmounted, the raw disk is still visible to the ker-
nel and accessible by block device tools, even though the filesystem is not
mounted. An unmounted disk is safe to physically detach from an investiga-
tor’s acquisition system.

Don’t attach or mount suspect drives without a write blocker. There is a
high risk of modifying, damaging, and destroying digital evidence. Modern
OSes will update the last-accessed timestamps as the files and directories
are accessed. Any userspace daemons (search indexers, thumbnail genera-
tors, and so on) might write to the disk and overwrite evidence, filesystems
might attempt repairs, journaling filesystems might write out journal data,
and other human accidents might occur. You can mount a filesystem while
using a write blocker, and it will be accessible in the same way as a regular
filesystem but in a read-only state, ensuring digital evidence is protected.

Accessing Filesystems with Forensic Tools
When you’re using forensic tools, such as Sleuth Kit, dcfldd, foremost, and
others, you can access the filesystem (without mounting) by using the cor-
rect block device representing the partition where the filesystem resides. In
most cases, this will be a numbered device, such as /dev/sda1, /dev/sda2, or
/dev/sdb1, and so on, as detected by the Linux kernel.
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In cases where the Linux kernel does not detect the filesystem, you may
need to explicitly specify it. A filesystem will not be correctly detected for any
of the following reasons:

• The filesystem is not supported by the host system (missing kernel mod-
ule or unsupported filesystem).

• The partition table is corrupted or missing.

• The partition has been deleted.

• The filesystem offset on the disk is unknown.

• The filesystem needs to be made accessible (unlock device, decrypt par-
tition, and so on).

In later sections of the book, I’ll explain techniques that use loop
devices to access partitions and filesystems that are not automatically
detected by the Linux kernel or various forensic tools.

Linux Distributions and Shells
When you’re creating an investigator workstation to perform digital forensic
acquisition or analysis work, it’s useful to understand the basic construction
or composition of a Linux system.

Linux Distributions
The term Linux technically refers only to the kernel, which is the actual
OS.4 The graphical interface, tools and utilities, and even the command
line shell are not Linux but parts of a Linux distribution. A distribution is
a functional package that typically contains the Linux kernel, installers
and package managers (usually unique to the distribution), and various
additional programs and utilities (including standard applications, such as
Office suites, web browsers, or email/chat clients). There is only one official
Linux kernel, but there are many Linux distributions—for example, Red
Hat, SUSE, Arch, and Debian, among others. There are also many deriva-
tive distributions. For example, Ubuntu is a derivative based on Debian,
CentOS is based on Red Hat, and Manjaro is based on Arch. For a compre-
hensive list of distributions (and other non-Linux, open source OSes), visit
http://distrowatch.com/ .

Multiple components make up the graphic interface of various Linux
distributions and are useful to understand. The X11 window system is a dis-
play server that interacts with the graphics hardware and provides an inter-
face to the X11 graphics primitives (Wayland is a newer alternative to X11).
A window manager controls movement, resizing, placement, and other
windows management on a system. Some examples of window managers

4. There is some naming controversy regarding the inclusion of GNU with Linux, see
https://en.wikipedia.org/wiki/GNU/Linux_naming_controversy.
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include Compiz, Mutter, and OpenBox, and you can use them without a
desktop environment. Desktop environments provide the look and feel of a
distribution and operate on top of the window manager. Examples of pop-
ular desktops are Gnome, KDE, Xfce, and Mate. The graphics environment
you choose for your forensic investigator’s workstation can be based on your
personal preference; it doesn’t have any impact on the evidence you collect
or analyze. The examples shown in this book were performed on a system
without a GUI (Ubuntu Server version).

The Shell
The shell is a command prompt that humans and/or machines use to sub-
mit commands to instruct and control an OS. The shell starts or stops pro-
grams, installs software, shuts down a system, and performs other work.
Arguably, the command shell offers more powerful features and possibili-
ties than graphical environments.

The examples in this book use the command line environment. Some
GUI equivalents or GUI frontends to the command line tools may exist, but
they are not covered in this book.

The most common shell in use today, and the default in most Linux
distributions, is Bash. The examples in this book use Bash but may also work
on other shells (zsh, csh, and so on).

Command Execution
The shell is simply another program that runs on a system. Human users
interface with it in the form of typed commands, and machines interface
with it in the form of executed shell scripts.

When human users enter commands, they usually type them into the
prompt and then press ENTER or RETURN. There may or may not be any
output, depending on the program run and the configuration of the shell.

Piping and Redirection
A useful feature of the Unix/Linux command line is the ability to pass
streams of data to programs and files using piping and redirection. This is
somewhat similar to drag-and-drop and copy/paste in graphical environ-
ments, but with much more flexibility.

A program can receive data from the output of other programs or
from files on the filesystem. A program can also output data to the input
of another program or send it to a file on the filesystem.

The following examples illustrate tool.sh redirecting output into file.txt,
receiving input from file.txt, and piping output from tool.sh to the input of
othertool.sh:

$ tool.sh > file.txt

$ tool.sh < file.txt

$ tool.sh | othertool.sh
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This piping and redirection mechanism is not limited to single com-
mands or files and can be chained in a sequence with multiple programs:

$ tool.sh < file.txt | othertool.sh | lasttool.sh > lastfile.txt

Pipelines and redirection are used extensively throughout this book.
They allow you to complete multiple tasks using a single line of commands,
and they facilitate scripting and automation, eliminating the need for
human interaction. The examples in this book use piping and redirection
to acquire images of storage media, move data between forensic programs,
and save evidential information of interest in files.

Closing Thoughts
In this chapter, I discussed the use of Linux as a viable platform to perform
forensic acquisition tasks and covered both its advantages and disadvantages.
I provided a review of Linux distributions and how the Linux kernel works. I
showed the concept of devices and filesystems and the use of shells, piping,
and redirection from the perspective of the forensic examiner. You now
have the Linux knowledge needed to understand the examples in the rest
of the book.
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3
FORENSIC IMAGE FORMATS

This chapter provides an overview of the
various acquisition tools, evidence con-

tainers, and forensic image formats com-
monly used today. Forensic image formats and

evidence containers are the structures that store the
forensically acquired image together with additional
case data, such as the time and duration of the acquisition, how the image
was acquired, size, errors, hashes, and so on. Additional features of foren-
sic formats typically include compressed files and encryption. This chapter
demonstrates command line forensic tasks using several forensic formats.

You’ll find an informative introductory paper describing various forensic
formats on the Digital Forensic Research Workshop (DFRWS) website at
http://www.dfrws.org/CDESF/survey-dfrws-cdesf-diskimg-01.pdf .

You can identify the commonly used forensic formats described in this
chapter by using the Sleuth Kit command img_stat:

# img_stat -i list

Supported image format types:

raw (Single or split raw file (dd))

aff (Advanced Forensic Format)

http://www.dfrws.org/CDESF/survey-dfrws-cdesf-diskimg-01.pdf


afd (AFF Multiple File)

afm (AFF with external metadata)

afflib (All AFFLIB image formats (including beta ones))

ewf (Expert Witness format (encase))

In addition to these formats, this chapter introduces an ad hoc method
using SquashFS as a practical forensic container for use with standard foren-
sic tools.

NOTE An important concept regarding forensic images is that they do not copy files; they copy
disk sectors, from sector 0 to the last accessible sector on the disk. The raw image size
will always equal the full disk size independent of the number of files residing on the
disk’s filesystem.

Raw Images
Raw images are not a format per se but a chunk of raw data imaged from an
evidence source. Raw images contain no additional metadata aside from the
information about the image file itself (name, size, timestamps, and other
information in the image’s own inode).

Extracting a raw image is technically straightforward: it is simply the
transfer of a sequence of bytes from a source device to a destination file.
This is normally done without any transformation or translation.

Disk block copying tools, such as dd and variants, are most commonly
used to extract raw images. These are discussed in the following sections.

Traditional dd
To create raw images, the simplest tool available, as well as the oldest, is the
original Unix dd utility. It was not designed for evidence collection, but its
simple byte-by-byte transfer is useful for imaging disk devices, because it
makes a complete low-level copy of individual sectors of a disk (preserving
the filesystem structure, files, directories, and metadata). However, fea-
tures such as logging, error handling, and hashing are either inadequate
or nonexistent; dd can be used when a better alternative isn’t available.
The Computer Forensic Tool Testing (CFTT) Project has tested several
standard dd versions. You’ll find the test results on the CFTT website at
http://www.cftt.nist.gov/disk_imaging.htm.

The dd utility was created in the 1970s on early UNIX systems for byte-
order conversion and block copying. It was initially developed to convert
EBCDIC-encoded data from the mainframe world into ASCII encoding,
which was preferable in the UNIX environment. The program simply takes
blocks of data from a source, optionally performs a conversion or transfor-
mation, and then places the blocks in a specified destination (on another
device or in a file). Modern versions of dd have enhancements that make it
useful for performing forensic acquisition of data from devices, such as disks
and tapes.
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Forensic dd Variants
Because the original dd tool was not designed for use in a forensic context,
certain features are missing. Subsequently, tools based on dd were devel-
oped to include desired forensic features, such as:

• Cryptographic hashing

• Improved error handling

• Logging

• Performance enhancements

• Verification checking

• Progress monitoring (forensic imaging can take many hours)

The two most commonly used variants of the dd utility are dcfldd,
created by Nicholas Harbour at the US Department of Defense Com-
puter Forensics Lab (DCFL) in 2002, and dc3dd, created in 2007 by Jesse
Kornblum while he was at the US Department of Defense Cyber Crime
Center (DC3).

The dcfldd tool is based on GNU dd and included additional features,
such as hashing, improved logging, and splitting output files, among others.
Although there have been no updates since 2006, the tool is still used today.
Alexandre Dulaunoy created a patched version of dcfldd that included some
Debian bug fixes, which you’ll find at https://github.com/adulau/ .

The more recent dc3dd tool is implemented as a patch and can more
easily follow code changes to GNU dd. The tool is currently maintained,
and recent updates have been made. It includes similar forensic features
as dcfldd and implements improved logging and error handling.

Both dcfldd and dc3dd originated from traditional dd and have similar
features. Although neither tool has built-in support for writing to forensic
formats (FTK, Encase, AFF), compression, or image encryption, you can use
command piping and redirection for these tasks. Examples of both tools are
shown throughout this book. Test reports from CFTT exist for dcfldd and
dc3dd.

Data Recovery Tools
Several data recovery tools are worth mentioning because of their robust
error handling and aggressive recovery methods. Although these tools were
not written with forensics in mind, they can be useful in situations where
all other forensic tools have failed to recover data from severely damaged
media.

GNU ddrescue and dd_rescue have similar names but are different
tools, developed independently. As of this writing, both tools were under
active development, each with different useful features. Although they both
reference dd in their names, neither tool uses the dd command syntax.

GNU ddrescue was created in 2004 by Antonio Diaz Diaz and is pack-
aged under Debian using the package name gddrescue. It uses aggressive and
persistent methods to attempt the recovery of bad areas of a disk.
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The dd_rescue tool was created in 1999 by Kurt Garloff and has an elab-
orate plugin system that supports compression, encryption, hashing, and
other plugins.

Other similar storage media recovery tools include myrescue and
safecopy. Some of these tools will be demonstrated in Chapters 6 and 7.

Forensic Formats
Several issues with raw images have led to the creation of forensic file for-
mats. When imaging storage media as evidence, there is metadata about the
investigation, the investigator, the drive details, logs/timestamps, crypto-
graphic hashes, and so on. In addition to metadata, there is often a need to
compress or encrypt an acquired image. Specialized forensic formats facil-
itate the implementation of these features, and the most common formats
are described here.

Forensic file formats are sometimes called evidence containers. Some
research work has also outlined the concept of digital evidence bags.1 Tools
to perform acquisition into forensic formats are demonstrated in Chapter 6.

EnCase EWF
Guidance Software, one of the oldest forensic software companies, produces
its flagship EnCase forensic software suite, which uses the Expert Witness
Format (EWF). The EWF format supports metadata, compression, encryp-
tion, hashing, split files, and more. A reverse engineered, open source
library and tools, libewf was created in 2006 by Joachim Metz and support
can be compiled into Sleuth Kit.

FTK SMART
AccessData’s FTK SMART format is a direct competitor to EnCase EWF. It’s
a proprietary format that also includes metadata, compression, encryption,
hashing, split files, and more. The command line ftkimager tool (which is
free but not open source) is available from AccessData and is demonstrated
in Chapters 6 and 7.

AFF
The Advanced Forensic Format (AFF) was created by Simson Garfinkel as an
open, peer-reviewed, published format. It includes all the expected features
of a forensic format and also includes additional encryption and signing
features using standard X.509 certificates. The AFFlib software package
contains a number of tools for converting and managing the AFF format.

1. Philip Turner, “Unification of Digital Evidence from Disparate Sources (Digital Evidence
Bags)” (paper presented at Digital Forensic Research Workshop [DFRWS], New Orleans,
Louisiana, August 18, 2005). http://dfrws.org/2005/proceedings/turner_evidencebags.pdf .
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AFF version 3 is separately maintained at http://github.com/sshock/
AFFLIBv3/ . In 2009, a paper on AFF version 4 was published.2 The Current
AFF version 4 website can be found at http://www.aff4.org/ . The Advanced
Forensic Format 4 Working Group (AFF4 WG) was announced in summer
2016 with the first meeting held at the DFRWS conference in Seattle.

SquashFS as a Forensic Evidence Container
Throughout this book, I’ll demonstrate a technique for creating a hybrid
forensic container that combines simple raw imaging and allows storage
of supporting case information in a similar way as more advanced forensic
formats. The technique uses SquashFS as a forensic evidence container
together with a small shell script, sfsimage, which manages various aspects
of the container. This method creates a compressed image combined with
imaging logs, information about the disk device, and any other information
(photographs, chain of custody forms, and so on) into a single package. The
files are contained in a read-only SquashFS filesystem, which you can access
without any special forensic tools.

SquashFS Background
SquashFS is a highly compressed, read-only filesystem written for Linux.
It was created by Phillip Lougher in 2002 and was merged into the Linux
kernel tree in 2009, starting with kernel version 2.6.29.

SquashFS was designed more for use with bootable CDs and embedded
systems, but it has a number of features that make it attractive as a forensic
evidence container:

• SquashFS is a highly compressed filesystem.

• It is read-only; items can be added but not removed or modified.

• It stores investigator’s uid/gid and creation timestamps.

• It supports very large file sizes (theoretically up to 16EiB).

• It is included in the Linux kernel and trivial to mount as a read-only
filesystem.

• The filesystem is an open standard (tools exist for Windows, OS X).

• The mksquashfs tool uses all available CPUs to create a container.

The use of SquashFS as a forensic evidence container is a practical alter-
native to using other forensic formats, because it facilitates the management
of compressed raw images acquired with dd. The sfsimage tool, described
next, provides the functionality you need to manage SquashFS forensic evi-
dence containers.

2. M.I. Cohen, Simson Garfinkel, and Bradley Schatz, “Extending the Advanced Forensic File
Format to Accommodate Multiple Data Sources, Logical Evidence, Arbitrary Information and
Forensic Workflow,” Digital Investigation 6 (2009): S57–S68.
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SquashFS Forensic Evidence Containers
Modern Linux kernels include support for SquashFS filesystems by default.
No additional kernel modules or recompiling are necessary to mount and
access a SquashFS filesystem. However, to create a file, append a file, or
list the contents of a SquashFS file, the squashfs-tools package is required.3

Additional forensic software packages for imaging (dcfldd, dc3dd, ewfacquire)
may be required, depending on your preferred imaging tool.

My sfsimage shell script is available at http://digitalforensics.ch/sfsimage/ .
Running sfsimage without any options provides you with some help text that
describes its usage:

$ sfsimage

Sfsimage: a script to manage forensic evidence containers with squashfs

Version: Sfsimage Version 0.8

Usage:

sfsimage -i diskimage container.sfs

sfsimage -a file ... container.sfs

sfsimage -l container.sfs ...

sfsimage -m container.sfs ...

sfsimage -m

sfsimage -u container.sfs ...

Where:

diskimage is a disk device, regular file, or "-" for stdin

container.sfs is a squashfs forensic evidence container

file is a regular file to be added to a container

and the arguments are as follows:

-i images a disk into a newly created *.sfs container

-a adds a file to an existing *.sfs container

-l lists the contents of an existing *.sfs container

-m mounts an *.sfs container in the current directory

-m without options shows all mounted sfs containers

-u umounts an *.sfs container

To configure sfsimage, you can edit the script or create separate
sfsimage.conf files for the script to use. The config file is documented
with comments and examples, and it allows you to define the following
parameters:

• Preferred imaging/acquisition command (dd, dcfldd, dc3dd, and so on)

• Preferred command to query a device (hdparm, tableu-parm, and so on)

• Default directory to mount the evidence container (the current working
directory is the default)

• How to manage privileged commands (sudo, su, and so on)

• Permissions and uid/gid of created files

3. With Debian-based systems, the package is installed using apt-get install squashfs-tools.
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The sfsimage script uses *.sfs as the naming convention for SquashFS
forensic evidence containers. The sfsimage(1) manual page is included with
the script and provides more details.

To image a disk into a SquashFS forensic evidence container, run sfsim-
age using the -i flag, the disk device, and the name of the evidence con-
tainer. An evidence container will be created with the image and initial
metadata about the device just imaged. In this example, sfsimage is config-
ured to use dc3dd as the imaging tool:

$ sfsimage -i /dev/sde kingston.sfs

Started: 2016-05-14T20:44:12

Sfsimage version: Sfsimage Version 0.8

Sfsimage command: /usr/bin/sfsimage -i /dev/sde

Current working directory: /home/holmes

Forensic evidence source: if=/dev/sde

Destination squashfs container: kingston.sfs

Image filename inside container: image.raw

Acquisition command: sudo dc3dd if=/dev/sde log=errorlog.txt hlog=hashlog.txt

hash=md5 2>/dev/null | pv -s 7918845952

7.38GiB 0:01:19 [95.4MiB/s] [========================================>] 100%

Completed: 2016-05-14T20:45:31

Here, a SquashFS container is created, and a regular raw image is pro-
duced within it. Additional logs and information are also created or can be
added separately.

You can add additional evidence to a container using sfsimage with the
-a flag. For example, if you need to add a photograph of the physical disk
to the forensic evidence container previously made, the following command
will perform the task:

$ sfsimage -a photo.jpg kingston.sfs

Appending to existing 4.0 filesystem on kingston.sfs, block size 131072

To list the contents of a SquashFS forensic evidence container, run the
sfsimage script with the -l flag as follows:

$ sfsimage -l kingston.sfs

Contents of kingston.sfs:

drwxrwxrwx holmes/holmes 135 2016-05-14 20:46 squashfs-root

-r--r--r-- holmes/holmes 548 2016-05-14 20:45 squashfs-root/errorlog.txt

-r--r--r-- holmes/holmes 307 2016-05-14 20:45 squashfs-root/hashlog.txt

-r--r--r-- holmes/holmes 7918845952 2016-05-14 20:44 squashfs-root/image.raw

-rw-r----- holmes/holmes 366592 2016-05-14 20:45 squashfs-root/photo.jpg

-r--r--r-- holmes/holmes 431 2016-05-14 20:45 squashfs-root/sfsimagelog.txt
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This command output shows the contents of the *.sfs container (without
mounting it). Also shown are the correct times when the files were created
or added. The error log, hash log, and sfsimage log contain documentation
about activity and errors. The photo.jpg is the photograph that was subse-
quently added to the container.

By mounting the *.sfs file, you can access an acquired image and added
metadata files in the SquashFS container. The contents become accessible as
a regular part of the filesystem. Because the SquashFS filesystem is read-only,
there is no danger of the contents being modified.

In the following example, the *.sfs file is mounted with the -m flag, and
regular forensic tools (sleuthkit mmls in this example) are used on the
acquired image:

$ sfsimage -m kingston.sfs

kingston.sfs.d mount created

$ mmls kingston.sfs.d/image.raw

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

000: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

001: ------- 0000000000 0000002047 0000002048 Unallocated

002: 000:000 0000002048 0015466495 0015464448 Linux (0x83)

Note that the mounted *.sfs container (by default) appears as a *.sfs.d
directory. Once mounted, you can access the files inside the directory by
using regular OS tools or forensic tools or even by exporting the files as a
shared drive over a network.

When the *.sfs.d mount is no longer needed, unmount it with the -u flag
as follows:

$ sfsimage -u kingston.sfs.d

kingston.sfs.d unmounted

Running sfsimage -m without a mount point will list all mounted
SquashFS containers. You can also mount multiple containers on a single
system.

Disk image file sizes have always been difficult to work with in a forensic
setting. Large disk sizes create space issues and logistical hurdles. Practical
compression methods such as SquashFS help manage this problem. To illus-
trate the practicality of having a compressed filesystem, sfsimage was used to
image an 8TB subject disk (bonkers) on an investigator system containing
only 2TB of disk space. The entire acquisition took more than 16 hours,
and the resulting compressed SquashFS file was only 1TB. The mounted
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SquashFS file provides access to the full 8TB as a raw image file. The image
is compressed on the fly without needing any temporary files. The file sizes
of the *.sfs file and the image file are shown here:

$ ls -l bonkers.sfs bonkers.sfs.d/bonkers.raw

-rw-r----- 1 holmes root 1042820382720 Jun 28 13:06 bonkers.sfs

-r--r--r-- 1 root root 8001562156544 Jun 27 20:19 bonkers.sfs.d/bonkers.raw

The use of SquashFS is a practical and effective solution for using
raw files in a compressed way and offers an alternative forensic evidence
container.

Closing Thoughts
This chapter introduced you to various forensic image formats. I provided
a short overview and history of different tools that can be used to forensi-
cally acquire a drive. You also learned about the SquashFS filesystem and
the sfsimage script used to create and manage SquashFS forensic evidence
containers. The tools and formats presented in this chapter will be used in
examples throughout the rest of the book.
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4
PLANNING AND PREPARATION

This chapter describes the preparatory
steps performed prior to imaging a disk

or storage medium. These include setting
up an audit trail of investigator activity, saving

output for reports, and deciding on naming conven-
tions. In addition, I describe various logistical chal-
lenges involved in the forensic acquisition of storage
media and how to establish a protected write-blocking
environment.

The subject of forensic readiness overlaps somewhat with the sections
in this chapter. However, forensic readiness is a broader topic that includes
general planning, budgeting, lab infrastructure, staff training, hardware and
software purchasing, and so on. If you consider the preceding requirements
needed as “macro” forensic readiness, you can consider the information
in this chapter as “micro” forensic readiness. The focus is narrower and
includes setting up a forensic examiner’s workstation environment and the
tools and individual tasks needed to analyze a disk or storage media.



It is worth noting that forensic readiness in a private sector organization
(in a corporate forensic lab, for example) is different from forensic readi-
ness in some public sector organizations, such as law enforcement agencies.
Private sector organizations, especially large corporate IT environments, can
dictate how their IT infrastructure is built and operated. Forensic readiness
in this controlled environment can be built into the IT infrastructure, pro-
viding advantages for a forensic examiner in the event of an investigation
or incident. This chapter focuses on preparatory forensic tasks, which the
private sector and public sector have in common.

Maintain an Audit Trail
An audit trail or log maintains a historical record of actions, events, and
tasks. It can have various levels of detail and can be either manual or auto-
mated. This section covers several command line methods for manually
tracking tasks as well as automated logging of command line activity.

Task Management
During a forensic examination, it’s beneficial to keep a high-level log of
pending and completed activity. Pending tasks turn into completed tasks,
and completed tasks make up the examination’s historical record. Often
while working, you’ll think of a task that you need to address sometime in
the future or a task you’ve completed and should note. Making quick notes
and more comprehensive task lists becomes increasingly valuable as the
length of the examination grows (possibly to many hours, days, or longer)
or when more than one examiner is involved.

Maintaining a list of pending and completed tasks during an examina-
tion is important for a number of reasons:

• Helps ensure nothing was forgotten

• Avoids duplicating work already done

• Improves collaboration and coordination when working in teams

• Shows compliance with policies and procedures

• Facilitates accounting, including billing

• Helps produce documentation and reports (formal incident reports or
forensic reports)

• Allows for post-incident review to identify lessons learned and support
process optimization

• Helps to maintain a longer-term historical record of completed activity

• Supports learning and education for new team members

• Serves as a guide to remember complex procedures

• Provides information for troubleshooting problems and getting support

• Maintains a record of work done by external and third-party examiners
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Many commercial task managers and investigation management tools
are available, but the focus in this section is on simple task management that
you can do from the command line. Using the command line permits you
to quickly track tasks and activity without leaving the terminal to access some
other graphical or web-based application.

Many open source command line task managers are available and can
be used to manage a forensic examiner’s activity. The most important crite-
ria include reliable task recording and a detailed timestamp (not just dates).

Taskwarrior
Taskwarrior is a popular task manager with many features for managing
large task lists in a quick and efficient manner. You’ll find more information
about Taskwarrior at http://taskwarrior.org/ . The following examples show
Taskwarrior commands in practical use in a forensic lab context.

To add several pending tasks:

$ task add acquire PC disk and transfer to evidence safe due:friday

Created task 1.

$ task add have a meeting with investigation team to plan analysis

Created task 2.

To list the current task list (task info will show times and more detailed
information):

$ task list

ID Due Age Description

1 2015-06-05 1m acquire PC disk and transfer to evidence safe

2 3s have a meeting with investigation team to plan analysis

2 tasks

To complete a task on the task list:

$ task 2 done

Completed task 2 'have a meeting with investigation team to plan analysis'.

Completed 1 task.

To log a completed task without placing it on the task list:

$ task log requested history of PC use at the firm

Logged task.

Taskwarrior is useful for managing large numbers of tasks. It pro-
vides reports, searching, sorting, and various levels of customizable detail.
Taskwarrior maintains timestamps and unique identifiers (UUID) for
each task, manages prioritization of pending tasks, and keeps a history
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of completed tasks. The ability to create user-defined attributes makes it
customizable for specific settings, such as a forensics lab or examination
process.

Todo.txt
You can also maintain a list of completed tasks and pending work by edit-
ing a simple text file. An example is the todo.txt file format by Gina Trapani
(see http://todotxt.com/ for more information). The todo.txt system defines a
file format for task creation and completion dates, priorities, projects, and
contexts. It also provides a shell script to manage the todo.txt file. Although
the todo.sh script performs all the necessary operations on the todo.txt task
list, the file format can be managed using a regular text editor. The notation
indicates priority with parentheses ((A), (B), and so on), context keywords
with @, and project keywords with +. Completed tasks are prefixed with an x.
Here is an example todo.txt file:

(A) Sign chain of custody forms @reception

(B) Start forensic acquisition +Disk_A @imagingstation

Discuss analysis approach with investigation team @meetingroom

x 2015-05-30 08:45 upgrade ram in imaging PC @imagingstation

The todo.txt apps don’t use timestamps, only dates. If you use this system,
you must manually include the time with the completed task.

Shell Alias
You can also maintain an examiner activity log of completed tasks without
the use of task management software. For example, here is a simple shell
alias that redirects a short description into a file with a timestamp:

$ alias log="echo $2 \`date +%FT%R\` >> ~/examiner.log"

You can customize the log filename and date format as desired. Mak-
ing a quick note of activity or viewing past activity takes a simple one-line
command, which you can enter anytime during the examination process.
When something significant or notable occurs, enter log followed by the
short description of the action taken. For example:

$ log removed hdd from PC and attached to examiner machine

...

$ log started forensic acquisition of the disk

...

$ log acquisition completed, disk sealed in evidence bag

...

$ cat ~/examiner.log

2015-05-30T09:14 informed that seized PC was enroute to forensic lab

2015-05-30T10:25 PC arrived, chain of custody forms signed

2015-05-30T10:47 removed hdd from PC and attached to examiner machine

2015-05-30T10:55 started forensic acquisition of the disk
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2015-05-30T15:17 acquisition completed, disk sealed in evidence bag

2015-05-30T16:09 disk transferred to evidence safe for storage

Simple systems for managing tasks are useful for staff who spend much
of their time working on the command line. They are also advantageous for
remotely working on systems with secure shell (ssh).

Shell History
This section discusses how to set up automated logging of shell commands
entered by the examiner on the command line. Ideally, this command
logging should not increase complexity or interfere with the forensic work
in progress. Using various tools, you can log the examiner’s command line
activity with automated background processes. This approach is completely
transparent to the examiner during the course of a forensic investigation.

The Unix/Linux shell was not originally designed with logging or audit
trails in mind. In the past, patches have been created to augment the his-
tory mechanism, hacks have attempted to capture commands as the shell is
used, and commercial products have performed various enterprise logging.
Developing a robust auditing and compliance system to log all commands
with timestamps, including shell builtins as well as executed programs and
pipelines, is beyond the scope of this book.

The Bash shell history can be configured to satisfy the following basic
requirements:

• Record the command entered by the examiner

• Record a timestamp for each command entered

• Record all commands, including duplicates, comments, and space-
prefixed commands

• Avoid truncating or overwriting history files

• Avoid conflicts when using multiple terminal windows on the same
system

• Include root and non-root command history

Using basic Bash shell history as an audit trail is rudimentary. Important
information, such as the command completion time, the working directory
where the command was executed, and the return code, are not logged. The
Bash history is also not a tamper-resistant system: the examiner can easily
modify or delete the history. Creating a secure and tamper-resistant audit
environment with restricted access is beyond the scope of this book.

Some shells, such as zsh, have additional history features that allow
for the logging of elapsed time. Other proposed solutions to improve
shell logging include the use of PS1, PROMPT_COMMAND, trap and DEBUG, and
key bindings to modify a command before executing. Using sudo logging;
auditd logging; or special scripts, such as preexec.sh, can also increase
command line logging. A useful tutorial at http://www.pointsoftware.ch/
en/howto-bash-audit-command-logger/ discusses this problem at length and
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proposes a solution. The command line audit trail should be tailored to
particular lab policies or expectations.

For basic shell command logging, the built-in shell history functionality
can be configured to record command line activity. Bash provides some
useful functionality, including the ability to enable the time stamping of
the commands entered. You can add the following commands to the Linux
startup scripts (.bashrc and so on) to enable the basic requirements outlined
in the previous list:

set -o history

shopt -s histappend

export HISTCONTROL=

export HISTIGNORE=

export HISTFILE=~/.bash_history

export HISTFILESIZE=-1

export HISTSIZE=-1

export HISTTIMEFORMAT="%F-%R "

These commands ensure that history is enabled and in append mode
(as opposed to overwriting with each new login). The two variables HISTCONTROL

and HISTIGNORE control which commands are saved to the history file. A com-
mon default setting is to ignore duplicates and commands beginning with
a space. To ensure complete logging of all commands, the HISTCONTROL and
HISTIGNORE variables are explicitly set to null. The HISTFILE variable is explicitly
set to ensure command history held in memory is saved when a shell exits.
HISTFILESIZE and HISTSIZE are set to -1 to ensure history is not truncated or
overwritten. The HISTTIMEFORMAT variable enables timestamps to be written to
the history file and allows you to set a time format. The format can include
regional settings and should include a timestamp, not just the date.

At the end of the examination, the history can be saved to a text file and
included in the examination’s supporting data files. The history can then
be reset and made ready for the next examination by using the following
commands:

$ history > examiner_bash_history.txt

$ history -c; history -w

Synchronizing the history across multiple shell instances can be tricky
because each shell keeps its history in memory and writes it to the history
file only on exit. Setting the variable PROMPT_COMMAND='history -a; history -r'

will write (append) and read new commands from the Bash history file every
time the command prompt is displayed.

A command logger that is actively developed is Snoopy: it provides a
number of features, including logging the commands to syslog. Snoopy
is a preloaded library that functions as a wrapper around the execv() and
execve() system calls. It is transparent to users, and you can enable and
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configure it by adding the Snoopy library to /etc/ld.so.preload and editing the
/etc/snoopy.ini file. For example, suppose the following series of commands
are entered on the Bash command prompt:

# fls -p -r /dev/sda1 | grep -i "\.doc$" |wc -l

10

These commands are individually logged to syslog with various details:

Jun 5 10:47:05 lab-pc snoopy[1521]: [uid:0 sid:1256 tty:(none) cwd:/ filename:

/bin/grep]: grep -i \.doc$

Jun 5 10:47:05 lab-pc snoopy[1522]: [uid:0 sid:1256 tty:(none) cwd:/ filename:

/usr/bin/wc]: wc -l

Jun 5 10:47:05 lab-pc snoopy[1520]: [uid:0 sid:1256 tty:/dev/pts/0 cwd:/ filename:

/usr/bin/fls]: fls -p -r /dev/sda1

You’ll find more information and the latest release of Snoopy at
https://github.com/a2o/snoopy/ .

Terminal Recorders
In some cases, it might be useful to show the work done in the terminal,
complete with command output (stdout), error messages (stderr), and other
messages or activity visible in a terminal session. Several tools exist to cap-
ture session activity and even provide playback of the session.

The most well-known tool is script. In this example, script is started and
the output appended to a file together with timing data for replay. After
running script, you can execute any normal shell commands, and they’ll
be saved for later viewing.

$ script -a -tscript.timing script.output

Script started, file is script.output

When the recorded session is finished, enter exit or press CTRL-D. You
can view the recording using the scriptreplay command as follows:

$ scriptreplay -m1 -tscript.timing script.output

...[session plays back here]...

Common issues that make this method challenging are the handling
of control characters and events such as terminal resizing. Other TTY
recorders and sniffers, such as ttyrec and termrec, are available with simi-
lar functionality and features.

Terminal multiplexers, such as tmux and GNU screen, also pro-
vide some level of logging that can be useful in certain situations. With
screen, you can set up logging for a detached session from within a session
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(CTRL-A followed by H). The tmux terminal multiplexer now supports log-
ging by using the pipe-pane option, as shown here:

$ tmux pipe-pane -o -t session_index:window_index.pane_index 'cat >> ~/output

.window_index-pane_index.txt'

Linux Auditing
Professional labs might want to implement more robust logging or an audit
trail to satisfy stricter organizational policies or regulatory requirements.
One possibility to achieve this is through auditd, a Linux audit package.
Typically, this involves running the auditd daemon with pam_tty_audit.so
configured as a pam module. You can review audit trail activity using the
aureport command.

Using auditd provides several security advantages, especially when used
with granular access control, such as sudo. Audit trails, in particular those
logging to a central log host, can be made relatively tamper resistant, ensur-
ing an increased level of integrity when recording examination work.

Comprehensive audit trails can record all TTY activity (including key-
strokes), as well as monitor file access and many other events on a system.
Setting up auditing and audit reporting can be a complex process, one
beyond the scope of this book.

You’ll find discussions of other solutions and hacks in various places,
including http://www.pointsoftware.ch/en/howto-bash-audit-command-logger/
and http://whmcr.com/2011/10/14/auditd-logging-all-commands/ .

As of Bash version 4.1, a new feature allowing command history logging
to syslog has been added (it may require recompilation to enable).

Organize Collected Evidence and Command Output
When conducting a forensic examination on the command line, it’s com-
mon to save command output from various tools and utilities to files for
future reference and reporting. You can do this by redirecting the output
of commands to text files. Those files can be saved with the rest of the exam-
ination data collected. During the process of collecting and saving large
amounts of evidence data, it is important to keep your file and directory
structure organized and understandable. This section talks about various
strategies to achieve this goal.

Naming Conventions for Files and Directories
To reduce confusion among all the files, directories, mount points, images,
and other saved data collected during an examination, it’s best to follow a
naming convention. Make it descriptive enough to be intuitive, but avoid
redundancy in the wording and file extensions. Most important, make nam-
ing conventions consistent throughout an investigation or incident and
across multiple incidents.
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Certain unique identifiers are associated with systems, storage media
devices, and removable media. Such identifiers can be useful when deciding
on a naming convention:

• Company asset tag or inventory number for PCs

• Manufacturer serial number for disk drives

• 64-bit World Wide Name (WWN) for disk drives

• Block device UUID for filesystems and RAIDs

• Forensic hash value for disk drive images

• 48-bit MAC address for network interface cards (NICs)

• Forensic lab evidence number (possibly a sticker or tag on the drive)

• Forensic lab evidence bag number (evidence bag containing the disc)

Wherever sensible, start all numbering with 1, not 0. Programmers and
engineers have a tendency to start at 0, but people who read and review the
examination reports may not have a technical background (lawyers, judges,
managers, and so on) and expect numbering to start with 1.

Raw image files use the extension *.raw throughout this book. The
commonly used *.dd extension implies that a dd tool was used, which might
not be the case. The *.raw extension describes the file accurately without
associating it with the particular tool used to acquire the image.

Ideally, a raw image’s filename should link a forensic image to a unique
attribute of the physical object. If a forensic format is used, this unique
information can be embedded as metadata in the forensic image file. This
allows you to associate a lone physical disk with an image and associate a
lone image with a physical disk. The disk and the image then remain linked
without any dependencies on surrounding context (directory names, evi-
dence shelves, and so on). This establishes a chain of custody link between
the physical and digital worlds.

If large numbers of disks are under analysis, possibly include a serial
number in the image filename. You can include varying levels of detail
in a filename. Although the filename server12-slot3-seagate-3.5in-disk-500gb
-SN12345ACBDEE.raw is very descriptive, it might be too detailed and
cumbersome to work with. A practical naming convention for many basic
incidents could simply be the storage media type with a number, for
example, disk1, tape1, ssd1, stick1, card1, cdrom1, dvd1, bluray1, floppy1, and
so on. In some cases, using a short description of the disk and the serial
number might be the most suitable approach, for example, crucial-ssd
-15030E69A241.raw. Often, it’s helpful to create image names that exam-
iners can easily discuss in conversation, such as, “We found the file on
disk1.” Terms used in conversations, raw examination output, and final
reports should have a consistent nomenclature.

When you’re extracting files from disk images, archive files, or other
compound images, add an underscore to the filename to indicate it has
been extracted. This will prevent you and others from accidentally opening
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malware, HTML pages with tracking bugs, macros in Office documents,
or other executables and scripts that might execute on opening. Some
examples are shown here:

$ icat image.raw 68 > photo.jpg_

$ icat image.raw 34 > customerlist.xls_

$ icat image.raw 267 > super-updater57.exe_

If an extracted file already ends with an underscore, add another one.
An appended underscore make it obvious that a file has been extracted as
evidence from a suspect drive.

When you’re analyzing an extracted file, saving tool output, or making
manual notes, create a text file with the original name and append _.txt to it.
For example:

$ exif photo.jpg_ > photo.jpg_.txt

$ vi customerlist.xls_.txt

$ objdump -x super-updater57.exe_ > super-updater57.exe_.txt

The _.txt extension signifies that the text file contains notes, tool output,
and results of forensic analysis work about the extracted file. The filename is
associated with the file originally extracted from the image. The text file may
contain bookmarks and examiner annotations that can be searched. Unless
it’s otherwise clear where an extracted file came from (which disk, partition,
and so on), it’s good practice to have such corresponding text files; they can
also indicate why it was chosen for extraction.

A file extension should always indicate the format of the content. For
example:

• *.txt can be opened and read using a text editor.

• *.raw is a raw data dump (disk, memory, and so on).

• *.pcap is captured network traffic.

• *.db is a database (possibly a Sleuth Kit file list).

• *.sfs is a SquashFS evidence container.

• *.e01 and *.aff are forensic formats.

Each case, incident, or investigation will have an associated physical
storage media. Storage media will have a corresponding forensic image
and associated output from various programs (hdparm, smartctl, and so
on). Each forensic image will have associated output from various programs
(mmls, fls, and so on), and each extracted file may have associated output
from various programs (exif, objdump, and so on). A naming convention
will help keep everything organized and allow the organizing system to scale
as the investigation data grows.
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How much information should be embedded into filenames and direc-
tory names? When is it more sensible to have a corresponding description
text file with additional information? How should the corresponding file be
associated with an image? Consider the following examples of two represen-
tations of the same incident.

An example of information embedded into filenames looks like this:

case42.txt

image6.case42.raw

image6.case42.raw.txt

mmls.image6.case42.txt

fls.part1.image6.case42.txt

An example of that same information embedded into a directory struc-
ture looks like this:

./case42/case.txt

./case42/image6/image.raw

./case42/image6/image.raw.txt

./case42/image6/mmls.txt

./case42/image6/part1/fls.txt

For manually written notes, further descriptions, caveats, issues, and
other random comments within a certain context, storing the information
in simple notes.txt or readme.txt files within working directories can be useful.
They can provide reminders, hints, or warnings for you or other examiners
to read at a later date.

When you’re noting web URLs that might pose a risk if opened, replace
http with hxxp to prevent others from accidentally clicking them. Such links
might take the user to malware, personal sites monitored by a suspect, sites
with tracking bugs, or other content that should not be accessed without
understanding the consequences.

Scalable Examination Directory Structure
Each incident, case, or investigation should have a single unique directory
(for example, case42). All collected evidence, images, and analysis work
should be contained within a hierarchy under that one root directory. As
investigations scale, a well-planned directory structure can scale with it.
Having a single directory is also practical when multiple forensic examiners
are working on the same incident and sharing the directory structure. Be
prepared to reorganize the directory structure if an incident grows in com-
plexity. If a large number of files are being extracted for individual analysis,
consider having an export directory (similar to EnCase).
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Examinations often scale unexpectedly, and a forensic examination
that starts with a single disk under suspicion might expand into a larger
examination involving multiple PCs with many disks. For example, suppose
someone reports strange or suspicious behavior of a PC or employee. A
single disk is seized for examination. Preliminary examination results find
a USB stick is also involved. It is found and examined, and a second PC is
linked to the incident. That PC has two internal hard disks and DVD burner.
Further search reveals a box of DVDs full of data hidden in a closet. Then it
turns out that an external USB hard disk and a spare notebook in another
building are also involved in the incident. The collected evidence has grown
from a single hard disk to 16 storage media items. This hypothetical incident
is not uncommon in large organizations. When preparing for an examina-
tion, expanded coverage should be anticipated. The naming convention
should be designed to scale as the size of an investigation grows.

Some PCs are used by multiple people, and some people use multiple
PCs. Notebooks are not necessarily bound to a physical location. Remov-
able media can be shared and attached to multiple PCs and notebooks.
Over long periods of time, PC hardware will change, offices may change,
departments will experience staff turnover, and organizational restructuring
may occur. Be sure to design file and directory names to accommodate these
changes.

As an examination progresses, the number of output files will grow as
more collected data is analyzed and output is produced. A good practice is
to create a directory structure to separate the files and organize the output
of the examination. As with filenames, the directory name should indicate
the contents without revealing confidential information. Creating a sepa-
rate directory for each disk or image analyzed segregates files and allows an
investigation to scale up.

The smallest examination usually consists of a single disk. A slightly
larger examination might consist of a PC containing multiple disks; consider
the following example directory structure:

HDD1

HDD2

HDD3

As another example, consider the examination of an entire workplace
that consists of a desktop PC (possibly with multiple disks), a notebook, sev-
eral USB drives, multiple CD-ROMs and DVDs, and an external disk pack. A
convenient directory structure would organize each piece of storage media
where the command output files are stored, allowing an examination to eas-
ily scale further. Consider a larger investigation consisting of multiple work-
places, across multiple office buildings, spread out across multiple countries.
In large global organizations, such investigations can occur; therefore, hav-
ing a well-thought-out naming convention will maintain the organization of
the examination process.
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It’s advantageous to rely on a directory structure to separate command
output from different disks, PCs, users, and locations. As a result, you won’t
need to embed this information into the output filenames. For example:

OFFICE-US123

USER-123456

PC1-HDA

CD1

CD2

USER-98765

PC1-HDA

PC1-HDB

NB1-HDA

USB1

USB2

DVD1

OFFICE-UK567

PC1-HDA

In this example, two office locations are US123 and UK567, in the
United States and the United Kingdom, respectively. The US office is
divided by user workplaces, and a directory is used for each piece of stor-
age media under examination. The UK office PC is not associated with any
particular user (possibly located in a meeting room), and this is reflected in
the directory structure.

Instead of using an employee identifier for the storage media, an orga-
nization’s IT inventory number can be used for the storage media in the
directory structure. This unique identifier will likely have additional infor-
mation associated with it (date of purchase, department, office location, user
details, software installed, history of use, and so on). Confidentiality reasons
might require you to omit information from the filenames and directory
structure. For example, names of suspected or targeted individuals should
not be embedded into filenames. Rather, you should use an identifier, ini-
tials, or an employee number. Code names for investigations might also be
used. They provide a minimal level of protection if the information is lost,
stolen, or otherwise accessed at a later date.

Save Command Output with Redirection
After creating the directory structure to store the analysis results from var-
ious items under examination, typical shell command output is redirected
into files from stdout as shown here:

# fls /dev/sda1 > fls-part1.txt

# fls /dev/sda2 > fls-part2.txt
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To include regular output and error messages, you need to redirect
stdout and stderr file descriptors to the file. Newer versions of Bash provide
an easy-to-remember method by adding an ampersand to the redirection
(this also applies when piping to another program):

# fls /dev/sda &> fls-part1.txt

Other shells and earlier Bash versions might require 2>&1 notation for
combining stderr and stdin. For example:

# fls /dev/sda > fls-part1.txt 2>&1

When a text file already exists and you need to add additional informa-
tion to it, you can use the >> notation to specify an append operation. For
example:

# grep clientnames.xls fls-part1.txt >> notes.txt

Here, all instances of a known filename are added to the end of the
notes.txt file.1 If notes.txt doesn’t exist, it will be created.

Many forensic tasks performed on the command line are time-consuming
and may take many hours to complete (disk imaging, performing operations
on very large files, and so on). Having a timestamp indicating the duration
of the command can be useful. The time command provides this functional-
ity. There are two common implementations of the time command: one is a
shell builtin with rudimentary features, and the other is a GNU utility with
additional features. The primary advantage of the shell builtin time version is
that it will time an entire pipeline of commands, whereas GNU time will only
time the first command in a pipeline.

Here is an example of using the time command to run a disk-imaging
program:

# time dcfldd if=/dev/sdc of=./ssd-image.raw

3907328 blocks (122104Mb) written.

3907338+1 records in

3907338+1 records out

real 28m5.176s

user 0m11.652s

sys 2m23.652s

The zsh shell can log the elapsed time of a command as part of the his-
tory file. This functionality is currently not available in Bash.

1. The dot in this example may be interpreted as a regular expression. This is ignored here for
simplicity.
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Another useful command for some situations is the timestamp output
command ts. Any output piped into ts will have a timestamp appended to
each line of output.

# (ls -l image.raw; cp -v image.raw /exam/image.raw; md5sum /exam/image.raw) |ts

May 15 07:45:28 -rw-r----- 1 root root 7918845952 May 15 07:40 image.raw

May 15 07:45:40 'image.raw' -> '/exam/image.raw'

May 15 07:45:53 4f12fa07601d02e7ae78c2d687403c7c /exam/image.raw

In this example, three commands were executed (grouped together
with parentheses) and the command outputs were sent to ts, creating a
timeline.

Assess Acquisition Infrastructure Logistics
Various logistical issues are important when performing forensic acquisi-
tion of storage media. Managing large acquired forensic images is not a
trivial task and so requires planning and forethought. Factors such as disk
capacity, time duration, performance, and environmental issues need to be
considered.

Image Sizes and Disk Space Requirements
Forensic images of storage media are orders of magnitude larger than the
small file sizes a PC typically handles. Managing disk image files of this size
takes additional thought and planning. You also need to consider certain
logistical factors when you’re preparing an examination system. Careful
preparation and planning for an examination will save you time and effort,
as well as help you avoid problems that might disrupt the process.

When creating a forensic image of a disk (hundreds of gigabytes or tera-
bytes), it is not files that are copied, but the individual disk sectors. If a 1TB
disk has only a single 20K Microsoft Word document on it, an uncompressed
forensic image will still be 1TB. As of this writing, 10TB disks are now on the
market, increasing the challenge for performing forensic acquisition.

When managing disk images, the examiner’s time and the examiner
host’s disk capacity are the main logistical factors that need to be consid-
ered. Before beginning a forensic acquisition of a subject disk or storage
media, you need to ask a number of questions:

• Can the attached storage be analyzed in place without taking a forensic
image?

• What is the size of the subject disk?

• What is the available space on the examiner’s machine?
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• What is the potential for image compression?

• How much space do forensic tools need for processing and temporary
files?

• What is the estimated number of files to be extracted for further
analysis?

• How much memory and swap space is available on the examiner’s
machine?

• Is there a possibility of more subject disks being added to the same case
or incident?

• Is there an expectation to separately extract all slack or unallocated disk
space?

• Are there plans to extract individual partitions (possibly includ-
ing swap)?

• Is there a potential need to convert from one forensic format to
another?

• Do disk images need to be prepared for transport to another location?

• Do subject disks contain virtual machine images to separately extract
and analyze?

• Do subject disks contain large numbers of compressed and archive files?

• Are subject disks using full-disk encryption?

• Is there a need to burn images to another disk or DVDs for storage or
transport?

• Is there a need to carve files from a damaged or partially overwritten
filesystem?

• How are backups of the examiner host performed?

In some situations, it may not be necessary to image a disk. When cer-
tain triage or cursory searching is conducted, it may be enough to attach the
disk to an examiner host and operate on the live subject disk. Depending
on the triage or search findings, you can decide whether or not to take a
forensic image. In a corporate environment, this approach could translate
into downtime for an employee, because they must wait for a seized disk
to be reviewed or analyzed. Corporate environments typically have a stan-
dard end-user PC build, which is designed without local user data (all data is
saved to servers or clouds). It could be more economical simply to swap the
original disk with a new disk. End-user PC disks are cheap, and replacing a
subject disk with a new one could be a cost-saving alternative when factoring
in the cost of employee downtime and the time needed to image a disk in
the field.
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File Compression
Using compression solves a number of the capacity challenges faced by a
forensic examiner. You can use a compressed forensic format to store the
resulting acquired image, but the effectiveness depends on a number of
factors.

The compression algorithms you choose will have some effect on the
size and time needed to compress a subject disk. A better compression ratio
will take more time to compress (and subsequently uncompress).

A relatively new PC disk that contains a large number of untouched disk
sectors (original manufacturer’s zeroed contents) will compress better than
an older disk containing significant amounts of residual data in the unallo-
cated sectors.

Disks that contain large amounts of compressed files (*.mp3, *.avi, and
so on) will not compress much further, and as a result, forensic imaging
tools will benefit less from added compression.

Encrypted subject disks or disks with large numbers of encrypted files
will not compress as well as unencrypted content due to the data’s higher
entropy level.

Sparse Files
Sparse files are worth mentioning because they have some advantages; how-
ever, they can also be problematic when calculating disk capacity. Some
filesystems use metadata to represent a sequence of zeros in a file instead
of actually writing all the zeros to the disk. Sparse files contain “holes” where
a sequence of zeros is known to exist. To illustrate, a new drive containing
mostly zeroed sectors is acquired with GNU dd,2 first as a regular raw file
and then as a sparse file.

# dd if=/dev/sde of=image.raw

15466496+0 records in

15466496+0 records out

7918845952 bytes (7.9 GB, 7.4 GiB) copied, 112.315 s, 70.5 MB/s

# dd if=/dev/sde of=sparse-image.raw conv=sparse

15466496+0 records in

15466496+0 records out

7918845952 bytes (7.9 GB, 7.4 GiB) copied, 106.622 s, 74.3 MB/s

The GNU dd command provides a conv=sparse flag that creates a sparse
destination file. In these dd examples, you can see the number of blocks
transferred is the same for both the normal and sparse files. In the following

2. The GNU cp command also allows for the creation of sparse files during copy.
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output, the file size and the MD5 hash are also identical. However, notice
how the block size used on the filesystem is very different (7733252 blocks
versus 2600 blocks):

# ls -ls image.raw sparse-image.raw

7733252 -rw-r----- 1 root root 7918845952 May 15 08:28 image.raw

2600 -rw-r----- 1 root root 7918845952 May 15 08:30 sparse-image.raw

# md5sum image.raw sparse-image.raw

325383b1b51754def26c2c29bcd049ae image.raw

325383b1b51754def26c2c29bcd049ae sparse-image.raw

Although the sparse file requires much less space, the full byte size is
still reported as the file size. This can cause confusion when calculating the
real available disk capacity. Sparse files are often used by VM images and can
become an issue when extracted for analysis.

You can also use sparse files as a method of compacting image files,
but using compressed forensic formats or SquashFS containers is preferred
and recommended. Not all programs and utilities can handle sparse files
correctly, and the files can become problematic when moved between file-
systems and platforms. Some programs may even expand sparse files when
reading them.

Reported File and Image Sizes
Reporting data sizes is an important concept to grasp. When you’re working
with forensic tools, size can refer to bytes, disk sectors, filesystem blocks, or
other units of measurement. The notation for bytes can be prefixed with a
multiplier (such as kilobytes, megabytes, gigabytes, terabytes, and so on),
and the multiplier can refer to multiples of either 1000 or 1024. Disk sectors
could represent sector sizes of either 512 bytes or 4096 bytes. The filesystem
block size depends on the type of filesystem and the parameters used during
creation. When you’re documenting sizes in a forensic context, it’s impor-
tant to always include descriptive units.

Many Linux tools support the -h flag to report file sizes in a human read-
able form. For example, you can use ls -lh, df -h, and du -h to more easily
view the size of files and partitions. An example ls output with several file
sizes is shown here:

# ls -l

total 4

-rw-r----- 1 root root 2621440000 Jan 29 14:44 big.file

-rw-r----- 1 root root 104857600 Jan 29 14:41 medium.file

-rw-r----- 1 root root 51200 Jan 29 14:42 small.file

-rw-r----- 1 root root 56 Jan 29 14:44 tiny.file

# ls -lh

total 4.0K

-rw-r----- 1 root root 2.5G Jan 29 14:44 big.file
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-rw-r----- 1 root root 100M Jan 29 14:41 medium.file

-rw-r----- 1 root root 50K Jan 29 14:42 small.file

-rw-r----- 1 root root 56 Jan 29 14:44 tiny.file

The sizes in the second command’s output are much easier to read and
understand.

Moving and Copying Forensic Images
Moving and copying forensic disk images from one place to another requires
planning and foresight. Don’t think of image files in the same way as typical
end-user files (even though technically they’re the same).

Acquiring, copying, and moving large disk images may take many hours
or even days depending on the size and speed of the source disk and other
performance factors. Consider the following list of typical file and disk
image sizes and the average amount of time needed to copy the file from
one disk to another disk:3

• 5KB simple ASCII text email: less than 1 second

• 5MB typical MP3 music file: less than 1 second

• 650MB CD ISO image: about 5 seconds

• 5–6GB typical DVD or iTunes movie download: about 1 minute

• 64GB common mobile phone image: about 10 minutes

• 250GB common notebook disk image: 30-40 minutes

• 1TB typical desktop PC image: more than 2 hours

• 2TB typical external USB disk image: more than 4 hours

• 8TB internal disk image: more than 16 hours

Once a copy or move process has been started, disrupting it could leave
the data in an incomplete state or require additional time to revert to the
original state. A copy or move operation could create temporary files or
result in two copies of the images existing temporarily.

In general, think carefully beforehand about the copying and moving of
large data sets, and don’t interrupt the process once it has started.

Estimate Task Completion Times
The forensic acquisition process takes time to complete. During this time,
people and other processes may be waiting. Therefore, it’s important to
calculate and estimate the completion time needed for various processes.
Also, determine whether you need to report estimated completion times to
other parties, such as management, legal teams, law enforcement, or other
investigators. It is important to manage expectations with regard to the time
needed for completion.

3. Tested on a typical i7 PC with two SATA3 disks using dd.
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Some important questions to consider include:

• Can the acquisition be safely left running overnight while nobody is
around?

• Is the examiner machine unusable during the acquisition process (for
performance reasons or other reasons)?

• Can other examination work be done while the forensic image is being
acquired?

• When can several tasks be completed in parallel?

• Are there certain tasks or processes that can only be done sequentially?

• Are there tasks that will block other tasks until they’re completed?

• Can the workload be shared, delegated, or distributed across multiple
examiners?

You can calculate an estimated completion time for an acquisition.
From previous work and processes, you should know the approximate initial
setup time. This includes factors such as completing paperwork, creating
necessary directory structure, documenting the hardware, attaching suspect
drives to the examiner host, deciding on the approach for acquisition, and
so on. This will give you a time estimate for the preacquisition phase.

You can calculate the expected storage media acquisition time based on
the amount of data (known) passing through the slowest component in the
system (the bottleneck).

Performance and Bottlenecks
To improve the efficiency of a forensic acquisition, you can optimally tune
the examiner host and assess the bottlenecks.

A performance bottleneck always occurs; this is simply the slowest
component in the system, which all other components must wait for. In a
forensic setting, the bottleneck should ideally be the subject disk. This is
the evidence source and is the only performance variable that you can’t (or
shouldn’t) modify.

You can assess the performance of various system components by read-
ing the vendor specifications, querying the system with various tools, or run-
ning various benchmarking and measurement tests.

Useful tools to check the speed of various components include dmidecode,
lshw, hdparm, and lsusb. Several command line examples are shown here.

To check the CPU family and model, current and maximum speed,
number of cores and threads, and other flags and characteristics, use this
command:

# dmidecode -t processor
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Here is a command to view the CPU’s cache (L1, L2, and L3):

# dmidecode -t cache

To view the memory, including slots used, size, data width, speed, and
other details, use this command:

# dmidecode -t memory

Here is a command to view the number of PCI slots, usage, designation,
and type:

# dmidecode -t slot

A command to view the storage interfaces, type (SATA, NVME, SCSI,
and so on), and speed:

# lshw -class storage

To view the speed, interface, cache, rotation, and other information
about the attached disks (using device /dev/sda in this example), use this:

# hdparm -I /dev/sda

To view the speed of the external USB interfaces (and possibly an
attached write blocker), use this command:

# lsusb -v

NOTE There are many different methods and commands to get this information. The com-
mands shown here each present one example of getting the desired performance infor-
mation. Providing an exhaustive list of all possible tools and techniques is beyond the
scope of this book.

Reading the vendor documentation and querying a system will identify
the speeds of various components. To get an accurate measurement, it’s best
to use tools for hardware benchmarking and software profiling. Some tools
for benchmarking include mbw for memory and bonnie++ for disk I/O.

The health and tuning of the OS is also a performance factor. Monitor-
ing the logs (syslog, dmesg) of the examiner hardware can reveal error mes-
sages, misconfiguration, and other inefficiency indicators. Tools to monitor
the performance and load of the live state of an examiner machine include
htop, iostat, vmstat, free, or nmon.
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You can also optimize the OS by ensuring minimal processes are run-
ning in the background (including scheduled processes via cron), tuning
the kernel (sysctl -a), tuning the examiner host’s filesystems (tunefs), and
managing disk swap and caching. In addition, ensure that the examiner OS
is running on native hardware, not as a virtual machine.

When you’re looking for bottlenecks or optimizing, it’s helpful to imag-
ine the flow of data from the subject disk to the examiner host’s disk. Dur-
ing an acquisition, the data flows through the following hardware interfaces
and components:

• Subject disk platters/media (rotation speed? latency?)

• Subject disk interface (SATA-X?)

• Write blocker logic (added latency?)

• Write blocker examiner host interface (USB3 with UASP?)

• Examiner host interface (USB3 sharing a bus with other devices?
bridged?)

• PCI bus (PCI Express? speed?)

• CPU/memory and OS kernel (speed? DMA? data width?)

These components will be traversed twice, once between the subject disk
and the examiner host, and again between the host and the examiner disk
where the acquired image is being saved.

Ensure that the data flow between the subject disk and the CPU/memory
is not using the same path as for the data flow between the CPU/memory
and the destination disk on the examiner host. For example, if a field imag-
ing system has a write blocker and an external disk for the acquired image,
and both are connected to local USB ports, it is possible they’re sharing a
single bus. As a result, the available bandwidth will be split between the two
disks, causing suboptimal performance.

For network performance tuning, the speed of the underlying network
becomes a primary factor, and performance enhancements include the
use of jumbo Ethernet frames and TCP checksum offloading with a high-
performance network interface card. It is also beneficial to assess when var-
ious programs are accessing the network and for what reason (automatic
updates, network backups, and so on).

To summarize, have an overall plan or strategy for the acquisition
actions you intend to take. Have well-tested processes and infrastructure
in place. Ensure that the right capacity planning and optimizing has been
done. Be able to monitor the activity while it’s in progress.

The most common bus speeds relevant for a forensic examination
host (in bytes/second) are listed in Table 4-1 for comparison. You’ll
find a good reference of the bit rates for various interfaces and buses at
https://en.wikipedia.org/wiki/List_of_device_bit_rates.
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Table 4-1: Common Bus/Interface Speeds

Bus/interface Speed

Internal buses
PCI Express 3.0 x16 15750 MB/s
PCI Express 3.0 x8 7880 MB/s
PCI Express 3.0 x4 3934 MB/s
PCI 64-bit/133MHz 1067 MB/s

Storage drives
SAS4 2400 MB/s
SAS3 1200 MB/s
SATA3 600 MB/s
SATA2 300 MB/s
SATA1 150 MB/s

External interfaces
Thunderbolt3 5000 MB/s
Thunderbolt2 2500 MB/s
USB3.1 1250 MB/s
USB3.0 625 MB/s
GB Ethernet 125 MB/s
FW800 98 MB/s
USB2 60 MB/s

Heat and Environmental Factors
During a forensic disk acquisition, every accessible sector on the disk is
being read, and the reading of the disk is sustained and uninterrupted,
often for many hours. As a result, disk operating temperatures can increase
and cause issues. When disks become too hot, the risk of failure increases,
especially with older disks. Researchers at Google have produced an infor-
mative paper on hard disk failure at http://research.google.com/archive/disk_
failures.pdf .

To reduce the risk of read errors, bad blocks, or total disk failure, it’s
worthwhile to monitor the disk temperature while a disk is being acquired.
Most disk vendors publish the normal operating temperatures for their
drives, including the maximum acceptable operating temperature.

You can also use several tools to manually query the temperature of a
drive. A simple tool that queries the SMART interface for a drive’s tempera-
ture is hddtemp, as shown here:

# hddtemp /dev/sdb

/dev/sdb: SAMSUNG HD160JJ: 46C

The hddtemp tool can be run as a daemon and periodically log to sys-
log, where you can monitor it for certain thresholds.

For more detailed output on a disk’s temperature, and in some cases a
temperature history, use the smartctl tool. Here is an example:

# smartctl -x /dev/sdb

...
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Vendor Specific SMART Attributes with Thresholds:

ID# ATTRIBUTE_NAME FLAGS VALUE WORST THRESH FAIL RAW_VALUE

...

190 Airflow_Temperature_Cel -O---K 100 055 000 - 46

194 Temperature_Celsius -O---K 100 055 000 - 46

...

Current Temperature: 46 Celsius

Power Cycle Max Temperature: 46 Celsius

Lifetime Max Temperature: 55 Celsius

SCT Temperature History Version: 2

Temperature Sampling Period: 1 minute

Temperature Logging Interval: 1 minute

Min/Max recommended Temperature: 10/55 Celsius

Min/Max Temperature Limit: 5/60 Celsius

Temperature History Size (Index): 128 (55)

Index Estimated Time Temperature Celsius

56 2015-06-07 19:56 50 *******************************
...

62 2015-06-07 20:02 55 ************************************
63 2015-06-07 20:03 55 ************************************
64 2015-06-07 20:04 51 ********************************

...

55 2015-06-07 22:03 46 ***************************

If a disk begins to overheat during a disk acquisition, take action to
reduce the temperature. As an immediate step, temporarily suspend the
acquisition process and continue it when the disk has cooled. Depending
on the acquisition method you use, this could be a simple matter of sending
a signal to the Linux process by pressing CTRL-Z or entering kill -SIGTSTP

followed by a process id. When the temperature decreases to an acceptable
level, the acquisition process can be resumed from the same place it was
suspended.

Suspending and resuming a process in this way should not affect the
forensic soundness of the acquisition. The process is suspended with its
operational state intact (current sector, destination file, environment vari-
ables, and so on). An example of suspending and resuming an imaging
process on the shell by pressing CTRL-Z looks like this:

# dcfldd if=/dev/sdb of=./image.raw

39424 blocks (1232Mb) written.^Z

[1]+ Stopped dcfldd if=/dev/sdb of=./image.raw

# fg

dcfldd if=/dev/sdb of=./image.raw

53760 blocks (1680Mb) written.

...
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Here an executing dcfldd command is suspended by pressing CTRL-Z on
the keyboard. Resume the process by using the fg command (foreground).
The process can also be resumed with a kill -SIGCONT command. See the
Bash documentation and the SIGNAL(7) manual page for more about job
control and signals.

Using tools such as Nagios, Icinga, or other infrastructure-monitoring
systems, you can automate temperature monitoring and alerting. Such
systems monitor various environmental variables and provide alerts when
critical thresholds are approached or exceeded.

Many forensic labs use heat sinks or disk coolers when imaging to
reduce the problem of overheating subject disks. This is recommended
during long acquisition sessions, especially when you’re working with older
drives.

If you attempt to use certain power management techniques to reduce
heat, they will be of little use. These methods work by spinning down the
drive after a period of idle time; however, during a sustained imaging opera-
tion, there is little or no idle time.

Establish Forensic Write-Blocking Protection
A fundamental component of digital evidence collection is performing a
forensically sound acquisition of storage media. You can achieve part of this
goal4 by ensuring that a write-blocking mechanism is in place before you
attach the disk to the forensic acquisition host.

When you attach a disk to a PC running a modern OS, automated
processes significantly increase the risk of data modification (and there-
fore evidence destruction). Attempts to automatically mount partitions,
generate thumbnail images for display in graphical file managers, index
for local search databases, scan with antivirus software, and more all put
an attached drive at risk of modification. Timestamps might be updated,
destroying potential evidence. Deleted files in unallocated parts of the disk
might be overwritten, also destroying evidence. Discovered malware or
viruses (the very evidence an investigator might be looking for) could be
purged. Journaling filesystems could have queued changes in the journal
log written to disk. There may be attempts to repair a broken filesystem or
assemble/synchronize RAID components.

In addition to automated potential destruction of evidence, human
error poses another significant risk. People might accidentally copy or
delete files; browse around the filesystem (and update last-accessed time-
stamps); or mistakenly choose the wrong device, resulting in a destructive
action.

Write blockers were designed to protect against unwanted data modi-
fication on storage media. Requiring the use of write blockers in a forensic
lab’s standard processes and procedures demonstrates due diligence. It satis-
fies industry best practice for handling storage media as evidence in a digital

4. Forensically sound acquisition also deals with data completeness and preserving integrity.
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forensic setting. Write blockers guarantee a read-only method of attaching
storage media to an examiner’s workstation.

NIST Computer Forensic Tool Testing (CFTT) provides formal require-
ments for write blockers. The Hardware Write Block (HWB) Device Specifi-
cation, Version 2.0 is available at http://www.cftt.nist.gov/hardware_write_block
.htm. This specification identifies the following top-level tool requirements:

• An HWB device shall not transmit a command to a protected storage
device that modifies the data on the storage device.

• An HWB device shall return the data requested by a read operation.

• An HWB device shall return without modification any access-significant
information requested from the drive.

• Any error condition reported by the storage device to the HWB device
shall be reported to the host.

Both hardware and software write blockers are available, as stand-alone
hardware, installable software packages, or bootable forensic CDs. In some
cases, media might have built-in read-only functionality.

Hardware Write Blockers
The preferred method of write blocking uses hardware devices situated
between a subject disk and an examiner’s workstation. A hardware write
blocker intercepts drive commands sent to the disk that might modify
the data. A photograph of a portable write-blocking device protecting a
SATA drive (Tableau by Guidance Software) is shown in Figure 4-1.

Figure 4-1: Portable SATA write blocker

Hardware write blockers usually have a switch or LED to indicate
whether write blocking functionality is in operation. A photograph of a
multifunctional write-blocking device designed to be built directly into
the examiner workstation (Tableau by Guidance Software) is shown in
Figure 4-2. It can protect SATA, SAS, IDE, FireWire, and USB drives.
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Figure 4-2: Multifunction drive bay write blocker

Write blockers can provide status information to the acquisition host
system. An example is the tableau-parm tool (https://github.com/ecbftw/
tableau-parm/), which can query the Tableau hardware write blocker for
information. You can use this open source tool to verify the write-blocking
status of a disk attached with a Tableau write blocker. For example:

$ sudo tableau-parm /dev/sdg

WARN: Requested 255 bytes but got 152 bytes)

## Bridge Information ##

chan_index: 0x00

chan_type: SATA

writes_permitted: FALSE

declare_write_blocked: TRUE

declare_write_errors: TRUE

bridge_serial: 000ECC550035F055

bridge_vendor: Tableau

bridge_model: T35u-R2

firmware_date: May 23 2014

firmware_time: 09:43:37

## Drive Information ##

drive_vendor: %00%00%00%00%00%00%00%00

drive_model: INTEL SSDSA2CW300G3

drive_serial: CVPR124600ET300EGN

drive_revision: 4PC10302

## Drive HPA/DCO/Security Information ##

security_in_use: FALSE

security_support: TRUE

hpa_in_use: FALSE

hpa_support: TRUE

dco_in_use: FALSE
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dco_support: TRUE

drive_capacity: 586072368

hpa_capacity: 586072368

dco_capacity: 586072368

According to Tableau’s documentation, the drive_vendor field may not
contain any information for some drives.5

During the final stages of editing this book, the first PCI Express write
blockers appeared on the market. An example is shown here from Tableau.
Attaching an NVME drive using a PCI Express write blocker produces the
following dmesg output:

[194238.882053] usb 2-6: new SuperSpeed USB device number 5 using xhci_hcd

[194238.898642] usb 2-6: New USB device found, idVendor=13d7, idProduct=001e

[194238.898650] usb 2-6: New USB device strings: Mfr=1, Product=2, SerialNumber=3

[194238.898654] usb 2-6: Product: T356789u

[194238.898658] usb 2-6: Manufacturer: Tableau

[194238.898662] usb 2-6: SerialNumber: 0xecc3500671076

[194238.899830] usb-storage 2-6:1.0: USB Mass Storage device detected

[194238.901608] scsi host7: usb-storage 2-6:1.0

[194239.902816] scsi 7:0:0:0: Direct-Access NVMe INTEL SSDPEDMW40 0174

PQ: 0 ANSI: 6

[194239.903611] sd 7:0:0:0: Attached scsi generic sg2 type 0

[194240.013810] sd 7:0:0:0: [sdc] 781422768 512-byte logical blocks: (400 GB/

373 GiB)

[194240.123456] sd 7:0:0:0: [sdc] Write Protect is on

[194240.123466] sd 7:0:0:0: [sdc] Mode Sense: 17 00 80 00

[194240.233497] sd 7:0:0:0: [sdc] Write cache: disabled, read cache: enabled,

doesn't support DPO or FUA

[194240.454298] sdc: sdc1

[194240.673411] sd 7:0:0:0: [sdc] Attached SCSI disk

The write blocker operates as a USB3 bridge and makes the NVME drive
available as a SCSI device. This particular write blocker supports PCI Express
drives using both AHCI and NVME standards. The hardware interfaces sup-
ported are regular PCI Express slots (Figure 4-3) and M.2 (Figure 4-4). Stan-
dard adapters from mini-SAS to PCI Express or M.2 can be used to attach
U.2 (SFF-8639) NVME drives. PCI write blockers with NVME support are
also available from Wiebetech.

The primary advantage of hardware-based write blockers is their OS
independence. They operate transparently and separately from the acqui-
sition host, eliminating the need to maintain drivers or OS compatibility.
This makes them ideal for use in a Linux acquisition environment.

5. “Tableau Bridge Query—Technical Documentation,” accessed 8 December 2005, previously
available for download. Contact Guidance Software for more information.
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Figure 4-3: Write blocker dock for PCI Express slot drives

Figure 4-4: Multifunction write blocker and dock for PCI Express M.2 drives

Special thanks to Arina AG in Switzerland for providing the write
blocker equipment used for test purposes in this book.

Software Write Blockers
Software write blockers have a somewhat controversial history. They’ve
become increasingly difficult to develop and maintain with modern OSes.
System updates by the OS vendor, configuration tweaks by the examiner,
and additionally installed software all create a risk of disabling, overwriting,
bypassing, or causing the failure of write-blocking functionality implemented
in software.

Software write blockers are difficult to implement. Simply mounting
a disk as read-only (mount -o ro) will not guarantee that the disk won’t be
modified. The read-only property in this context refers to the filesystem, not
the disk device. The kernel may still write to the disk for various reasons.
Software write blocking must be implemented in the kernel, below the
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virtual filesystem layer and even below the other device drivers that imple-
ment a particular drive interface (AHCI for example). Several low-level soft-
ware write-blocking methods have been used under Linux but with limited
success.

Tools such as hdparm and blockdev can set a disk to read-only by setting
a kernel flag. For example:

# hdparm -r1 /dev/sdk

/dev/sdk:

setting readonly to 1 (on)

readonly = 1 (on)

The same flag can be set with blockdev, like this:

# blockdev --setro /dev/sdk

The method of setting kernel flags is dependent on properly configur-
ing udev to make newly attached drives read-only before any other process
has a chance to modify them.

A kernel patch has also been written to specifically implement foren-
sic write-blocking functionality. You’ll find more information about it at
https://github.com/msuhanov/Linux-write-blocker/ . Several forensic boot
CDs use Maxim Suhanov’s write-blocking kernel patch. The following
helper script manages software write blocking on the DEFT Linux forensic
boot CD:

% cat /usr/sbin/wrtblk

#!/bin/sh

# Mark a specified block device as read-only

[ $# -eq 1 ] || exit

[ ! -z "$1" ] || exit

bdev="$1"

[ -b "/dev/$bdev" ] || exit

[ ! -z $bdev##loop*$ ] || exit

blockdev --setro "/dev/$bdev" || logger "wrtblk: blockdev --setro /dev/$bdev

failed!"

# Mark a parent block device as read-only

syspath=$(echo /sys/block/*/"$bdev")

[ "$syspath" = "/sys/block/*/$bdev" ] && exit

dir=$syspath%/*$

parent=$dir##*/$

[ -b "/dev/$parent" ] || exit

blockdev --setro "/dev/$parent" || logger "wrtblk: blockdev --setro /dev/$parent

failed!"
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The patch is implemented in the kernel and is turned on (and off)
using helper scripts. The helper scripts simply use the blockdev command
to mark the device as read-only.

NIST CFTT has performed software write blocker tool tests, which you’ll
find at http://www.cftt.nist.gov/software_write_block.htm.

Hardware write blockers are still the safest and recommended method
of protecting storage media during forensic acquisition.

Linux Forensic Boot CDs
The need to perform incident response and triage in the field has led to
the development of bootable Linux CDs that contain the required soft-
ware to perform such tasks. These CDs can boot a subject PC and access
the locally attached storage using various forensic tools. Forensic boot CDs
are designed to write protect discovered storage in the event it needs to
be forensically imaged. You can make an attached disk writable by using a
command (like wrtblk shown in the previous example), which is useful in
acquiring an image when you attach an external destination disk. Forensic
boot CDs also have network functionality and enable remote analysis and
acquisition.

Forensic boot CDs are useful when:

• A PC is examined without opening it to remove a disk.

• A write blocker is not available.

• PCs need to be quickly checked during triage for a certain piece of evi-
dence before deciding to image.

• Linux-based tools (Sleuth Kit, Foremost, and so on) are needed but not
otherwise available.

• A forensic technician needs to remotely perform work via ssh.

Several popular forensic boot CDs that are currently maintained
include:

• Kali Linux (formerly BackTrack), which is based on Debian: https://
www.kali.org/

• Digital Evidence & Forensics Toolkit (DEFT), which is based on Ubuntu
Linux: http://www.deftlinux.net/

• Pentoo, a forensic CD based on Gentoo Linux: http://pentoo.ch/

• C.A.I.N.E, Computer Forensics Linux Live Distro, which is based on
Ubuntu Linux: http://www.caine-live.net/

Forensic boot CDs require a lot of work to maintain and test. Many
other forensic boot CDs have been available in the past. Because of the
changing landscape of forensic boot CDs, be sure to research and use the
latest functional and maintained versions.
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Media with Physical Read-Only Modes
Some storage media have a write-protect mechanism that can be useful in a
forensic context. For example, most tapes have a sliding switch or tab that
instructs the tape drive to treat them as read-only, as shown on the left of
Figure 4-5. On the LTO-5 tape (bottom left), a closed tab indicates it is write
protected; on the DAT160 tape (top left), an open tab indicates it is write
protected.

SD memory cards have a lock switch that write protects the memory card,
as shown on the right of Figure 4-5.

Figure 4-5: Write-protect tabs on tapes and SD cards

Older USB thumb drives may have a write-protect switch. Some very old
IDE hard disks have a jumper that you can set to make the drive electronics
treat the drive as read-only.

CD-ROMs, DVDs, and Blu-ray discs do not need a write blocker, because
they are read-only by default. The simple act of accessing a rewritable disc
will not make modifications to timestamps or other data on the disc; changes
to these optical media must be explicitly burned to the disc.

Closing Thoughts
In this chapter, you learned how to set up basic auditing, activity logging,
and task management. I covered topics such as naming conventions and
scalable directory structures, as well as various challenges with image sizes,
drive capacity planning, and performance and environmental issues. Finally,
this chapter discussed the crucial component of forensic write blocking. You
are now ready to attach a subject drive to the acquisition host in preparation
for executing the forensic acquisition process.
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5
ATTACHING SUBJECT MEDIA TO

AN ACQUISITION HOST

This chapter discusses the physical attach-
ment of subject storage media to an exam-

ination host, identification of the subject
device on the system, and querying the device

firmware for information. You’ll also learn about
methods for removing HPA and DCO, unlocking ATA
passwords, and decrypting self-encrypting drives. The
chapter ends with several special storage topics. Let’s
start by examining the subject PC hardware.

Examine Subject PC Hardware

When a PC or notebook is seized in the field or delivered to a forensic
lab for examination, more than just the internal disks can be examined.
Included in the examination should be a complete review of the PC hard-
ware configuration, BIOS settings, hardware clock, and so on.



NOTE The scope of this book covers “dead” disk acquisition, that is, drives and PCs that
are already powered off. Depending on the organization, a triage process will exist
for arriving at a crime or incident scene with live, running machines. This triage
process may include taking photographs of screens, using mouse jigglers to prevent
password-protected screensavers from activating, or running memory-dumping tools.
First responder triage of live PCs is outside the scope of this book.

Physical PC Examination and Disk Removal
Before you unplug any drive cables or unscrew any drives from the drive
bays, take photographs of the subject PC to document the hardware con-
figuration, the number of disks it contains, and how the disks are cabled to
the mainboard.

Remove disks with care, especially if they’re in old PCs that may not have
been opened for many years. The top of each drive can be photographed
to capture the serial number and other information on the label. For each
disk, note the cable location on the mainboard. If a mainboard has multiple
SATA ports, note which port each disk was using.

Open optical drive trays to confirm they don’t contain any discs. Most
optical drives have a pinhole that can manually release the drive door with-
out powering on the drive.

Examine the PCI slots for PCI SATA Express drives or PCI NVME drives.
If a mainboard has an M.2 or mSATA slot, check for SSD circuit boards.

Subject PC Hardware Review
After removing all the drives from the subject PC enclosure, power on the
subject mainboard and note the BIOS configuration, clock, boot order,
potential BIOS logs, version, and so forth.

If you require further information about the subject PC, examine it
using a forensic boot CD that contains various hardware analysis tools, such
as lshw, dmidecode, biosdecode, lspic, and more.

You might be able to retrieve some vendor-specific information by using
vendor-specific tools—for example, vpddecode for IBM and Lenovo hard-
ware or ownership for Compaq hardware ownership tags.

Examine and document any additional hardware components as well,
such as memory modules or PCI cards.

Attach Subject Disk to an Acquisition Host
After physically attaching the subject drive to the examiner workstation
(using a write-blocking mechanism), you need to identify the correct block
device associated with the subject drive. To reliably identify the subject drive
on the acquisition host, list the storage media devices, confirm any unique
identifiers associated with the physical drive, and determine the correspond-
ing device file in /dev. This section examines these steps in more detail.
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View Acquisition Host Hardware
Understanding the examination host’s hardware configuration is useful
for performance tuning, capacity planning, maintaining a stable platform,
troubleshooting, isolating faults, and reducing the risk of human error. In
this section, you’ll see examples of tools you can use for listing and viewing
PC hardware.

Using the lshw tool, you can generate a quick overview of the examiner
workstation hardware:

# lshw -businfo

The bus information describes the device specific addresses, such
as pci@domain:bus:slot.function, scsi@host.channel.target.lun, and
usb@bus:device.

You can also use lshw to specifically look for an attached device type.
For example:

# lshw -businfo -class storage

Bus info Device Class Description

=======================================================

...

usb@2:5.2 scsi22 storage Forensic SATA/IDE Bridge

...

# lshw -businfo -class disk

Bus info Device Class Description

=======================================================

...

scsi@22:0.0.0 /dev/sdp disk 120GB SSD 850

...

Note that scsi22 links to scsi@22:.0.0.0, which links to /dev/sdp. Identify-
ing the Linux device file for an attached physical drive is discussed further in
the following sections.

If the subject drive has been externally attached, it’s likely connected
via USB, Thunderbolt, FireWire, or eSATA (and in rare cases, possibly Fibre
Channel).

If the drive has been internally attached, it’s likely connected via SATA
cable, a PCI Express slot, an M.2 interface, or SAS cable (or possibly legacy
interfaces, such as parallel SCSI or IDE).

You can list the devices attached to the PCI bus (including parallel PCI
and PCI Express) using the lspci tool:

# lspci

The PCI bus categorizes devices by class (see http://pci-ids.ucw.cz/ for
more information about PCI IDs and device classes). Devices matching the
Mass storage controller class (class ID 01) are of interest because they manage
attached storage media.
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Newer versions of lspci (as of pciutils version 3.30) can list the PCI bus
by device class, which can be useful to isolate specific hardware of interest.
The following command lists all SATA mass storage controller (class ID 01,
subclass ID 06) devices:

# lspci -d ::0106

This command enumerates all the SCSI, IDE, RAID, ATA, SATA, SAS,
and NVME mass storage controller devices on a system:

# for i in 00 01 04 05 06 07 08; do lspci -d ::01$i; done

Another PCI class that can manage connected storage media is the serial
bus controller class (class ID 0C). The following command lists all devices with
the USB serial bus controller class (class ID 0C, subclass ID 03):

# lspci -d ::0C03

This command enumerates all FireWire, USB, and Fibre Channel serial
bus controllers on the examiner host:

# for i in 00 03 04; do lspci -d ::0C$i; done

If the subject drive is attached via USB, it won’t appear on the PCI bus.
You can list USB devices separately using lsusb. Without options, the com-
mand generates a list of all attached USB devices:

# lsusb

...

Bus 001 Device 005: ID 0951:1665 Kingston Technology

Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Here a USB thumb drive is attached to USB bus 1 and assigned a USB
device ID of 5. Running lsusb -v will provide more detailed output about the
USB device.1

The preceding tools and examples provide an overview of the storage
media controllers and the hardware attached to an examiner workstation.
The lshw(1), lspci(8), and lsusb(8) manual pages explain additional parame-
ters and features, which you can use to view more detail about the hardware.

1. From the lsusb -v output, the iSerial device descriptor in Linux Foundation...root hub devices
will point to the USB controller’s PCI device address.
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Identify the Subject Drive
Having an understanding of the examiner workstation hardware, especially
the available bus systems and controllers, will help you locate where a subject
disk is attached. The next step is to positively confirm the identity of the sub-
ject drive using some distinct information, such as a serial number, unique
model number, or other unique property.

You can use multiple approaches to identify the subject device. If
the subject disk is attached via the USB bus and listed with the lsusb
tool, you can retrieve more information by specifying the subject disk’s
vendor:productID, as shown here:

# lsusb -vd 0781:5583

Bus 004 Device 002: ID 0781:5583 SanDisk Corp.

...

idVendor 0x0781 SanDisk Corp.

idProduct 0x5583

bcdDevice 1.00

iManufacturer 1 SanDisk

iProduct 2 Ultra Fit

iSerial 3 4C530001200627113025

...

wSpeedsSupported 0x000e

Device can operate at Full Speed (12Mbps)

Device can operate at High Speed (480Mbps)

Device can operate at SuperSpeed (5Gbps)

...

From this output, you can use the unique information (serial number
and so on) about the device to confirm the identity of the attached device as
the subject drive. If the serial number or other unique properties match the
physically attached drive, you’ve identified the correct device.

Nearly all drives are accessible via SCSI commands (directly attached
NVME drives are a notable exception) . To query for an attached storage
device, you can use the lsscsi tool. It supports a number of transport layer
protocols, including SATA, USB, SAS, FireWire, ATA, SCSI, Fibre Channel,
and more. lsscsi is also useful for linking kernel device paths with device files
in /dev:

# lsscsi -v

...

[6:0:0:0] disk ATA INTEL SSDSA2CW30 0302 /dev/sda

dir: /sys/bus/scsi/devices/6:0:0:0 [/sys/devices/pci0000:00/0000:00:1f.2/ata7/

host6/target6:0:0/6:0:0:0]

...
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The kernel outputs an informational message when devices are attached
or detached from a host system. This is the kernel ring buffer and is viewed
with the dmesg tool. Running dmesg with the -T flag prints human-readable
timestamps, which are useful when you’re determining which device was
added at a known time:

# dmesg -T

...

[Sun May 15 13:44:45 2016] usb 2-1: new SuperSpeed USB device number 9 using

xhci_hcd

[Sun May 15 13:44:45 2016] usb 2-1: New USB device found, idVendor=0781,

idProduct=5583

[Sun May 15 13:44:45 2016] usb 2-1: New USB device strings: Mfr=1, Product=2,

SerialNumber=3

[Sun May 15 13:44:45 2016] usb 2-1: Product: Ultra Fit

[Sun May 15 13:44:45 2016] usb 2-1: Manufacturer: SanDisk

[Sun May 15 13:44:45 2016] usb 2-1: SerialNumber: 4C530001141203113173

[Sun May 15 13:44:45 2016] usb-storage 2-1:1.0: USB Mass Storage device detected

[Sun May 15 13:44:45 2016] scsi host24: usb-storage 2-1:1.0

[Sun May 15 13:44:46 2016] scsi 24:0:0:0: Direct-Access SanDisk Ultra Fit

1.00 PQ: 0 ANSI: 6

[Sun May 15 13:44:46 2016] sd 24:0:0:0: Attached scsi generic sg5 type 0

[Sun May 15 13:44:46 2016] sd 24:0:0:0: [sdf] 30375936 512-byte logical blocks:

(15.6 GB/14.5 GiB)

[Sun May 15 13:44:46 2016] sd 24:0:0:0: [sdf] Write Protect is off

[Sun May 15 13:44:46 2016] sd 24:0:0:0: [sdf] Mode Sense: 43 00 00 00

[Sun May 15 13:44:46 2016] sd 24:0:0:0: [sdf] Write cache: disabled, read cache:

enabled, doesn't support DPO or FUA

[Sun May 15 13:44:46 2016] sdf: sdf1

[Sun May 15 13:44:46 2016] sd 24:0:0:0: [sdf] Attached SCSI removable disk

You can use this output to identify an attached physical device, linking
the USB device to a SCSI host ID and a block device name. In this example,
usb 2-1: refers to bus 2 and physical port 1 (the plug). The USB drive is
assigned device number 9 and uses the xhci_hcd driver (which has USB3 sup-
port). The vendor and product ID strings, idVendor=0781, idProduct=5583, are
displayed, followed by informational strings for the manufacturer, product,
and serial number (these can be different from idVendor and idProduct). The
Bulk-Only Transport usb-storage driver detects the device (not needed for
UASP devices), and scsi host24: indicates a SCSI host number has been
assigned to the device and corresponds to the SCSI address 24:0:0:0:. Two
devices are created, sg5 (generic SCSI) and sdf (block device), which cor-
respond to /dev/sg5 and /dev/sdf. Some information about the (now estab-
lished) SCSI device is queried, and partition tables are detected (sdf1).

A simpler command to list all attached storage devices, including descrip-
tive information and device paths, is the lsblk command. Newer versions of
lsblk provide output options for vendor, model, revision, serial number, and
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WWN (World Wide Name; https://en.wikipedia.org/wiki/World_Wide_Name)
number. In addition, lsblk provides useful technical details, such as the
device name, size, physical and logical sector size, transport (USB, SATA,
SAS, and so on), SCSI address, and more:

# lsblk -pd -o TRAN,NAME,SERIAL,VENDOR,MODEL,REV,WWN,SIZE,HCTL,SUBSYSTEMS,HCTL

Most of the tools demonstrated here are simply reading different files
and directories from the Linux /proc directory. You’ll find more information
about attached drives and other kernel structures in the /proc tree. Consult
the proc(5) manual page for more information about the proc filesystem.

Query the Subject Disk for Information
After attaching the subject drive to the examiner workstation and positively
identifying the correct Linux device to work with, you can gather additional
meta information about the device. You can query the device directly for
information about the drive, the firmware, SMART data, and other configu-
ration details.

A number of tools are available to query information stored in the hard
drive. Typically, you access this firmware information using lower-level
ATA or SCSI interface commands, which interact directly with the drive
electronics.

Document Device Identification Details
At this point, you should have a number of details and technical identifiers
about the drive attached to the examiner host, including the following:

• Vendor, make, and model

• Serial number or WWN

• Linux device name

• PCI domain:bus:slot.function

• PCI vendorID:deviceID

• USB bus:device

• USB vendorID:productID

• SCSI host:channel:target:lun

You can save this information for reporting purposes by redirecting the
various tool command outputs to text files.

Document evidence for the use of a write blocker. If you’re using a
hardware write blocker, such as Tableau, query it and save the results:

# tableau-parm /dev/sdc > write-blocked.txt
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Here /dev/sdc should be replaced with the relevant device of the subject
drive.

If you’re using a software write blocker, such as wrtblk, query blockdev for
a report on the current status of the device (including the read-only flag):

# blockdev --report /dev/sda > wrtblk.txt

Here /dev/sda should be replaced with the relevant device of the subject
drive.

If the subject drive is attached via USB, you can specify it either by the
bus:device (using -s) or by vendor:product (using -d). The following two com-
mands will produce and save the same verbose output:

# lsusb -v -s 2:2 > lsusb.txt

# lsusb -v -d 13fe:5200 > lsusb.txt

Here 2:2 and 13fe:5200 should be replaced with the relevant values for
the subject drive on your acquisition host.

The lsblk command can specify a Linux device, and the -O flag will out-
put all available columns in the output:

# lsblk -O /dev/sda > lsblk.txt

Here /dev/sda should be replaced with the relevant device of the subject
drive on your acquisition host.

The lsscsi command can also save a certain perspective of the attached
drive, specifying the SCSI address to use:

# lsscsi -vtg -L 16:0:0:0 > lsscsi.txt

Here 16:0:0:0 should be replaced with the relevant SCSI address of the
subject drive on your acquisition host.

Relevant dmesg output could also be copied into a text file if desired.
The examples shown in this section illustrated how to save command

output for a specific subject drive. For brevity, subsequent chapters some-
times will not include examples of saving data to files, focusing instead on
the construction of commands.

Query Disk Capabilities and Features with hdparm
Many of the tools discussed previously (lsusb, lspci, lsblk, and so on) have
queried the Linux system and kernel structures for information. How-
ever, it’s possible to query a drive directly for additional information. The
hdparm tool is useful for sending commands to most drives attached to a
Linux system.
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The hdparm tool operates by sending requests to the OS disk drivers
(using ioctls) to retrieve information about the disk. From a forensics per-
spective, a number of items may be of interest or useful to document:

• Details about the drive geometry (physical and logical)

• The disk’s supported standards, features, and capabilities

• States and flags related to the drive configuration

• DCO and HPA information

• Security information

• Vendor information, such as make, model, and serial number

• The WWN device identifier (if it exists)

• Time needed for secure erase (for most disks, this is roughly the acquisi-
tion time)

For more detailed information about hdparm’s features, see the
hdparm(8) manual page.

The following example shows how to use hdparm to get an overview
of the disk using the -I flag together with the raw disk device. The listing
is annotated with comments relevant to forensic investigators.

The output begins with documenting information about the drive,
including manufacturer, model, serial number, and the standards with
which it is compliant. Also in the output are various drive parameters, such
as physical and logical sector size, number of sectors, form factor, and other
physical properties.

# hdparm -I /dev/sda

/dev/sda:

ATA device, with non-removable media

Model Number: WDC WD20EZRX-00D8PB0

Serial Number: WD-WCC4NDA2N98P

Firmware Revision: 80.00A80

Transport: Serial, SATA 1.0a, SATA II Extensions, SATA Rev 2.5,

SATA Rev 2.6, SATA Rev 3.0

Standards:

Supported: 9 8 7 6 5

Likely used: 9

Configuration:

Logical max current

cylinders 16383 16383

heads 16 16

sectors/track 63 63

--

CHS current addressable sectors: 16514064

LBA user addressable sectors: 268435455
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LBA48 user addressable sectors: 3907029168

Logical Sector size: 512 bytes

Physical Sector size: 4096 bytes

device size with M = 1024*1024: 1907729 MBytes

device size with M = 1000*1000: 2000398 MBytes (2000 GB)

cache/buffer size = unknown

Nominal Media Rotation Rate: 5400

Capabilities:

LBA, IORDY(can be disabled)

Queue depth: 32

Standby timer values: spec'd by Standard, with device specific minimum

R/W multiple sector transfer: Max = 16 Current = 16

DMA: mdma0 mdma1 mdma2 udma0 udma1 udma2 udma3 udma4 udma5 *udma6

Cycle time: min=120ns recommended=120ns

PIO: pio0 pio1 pio2 pio3 pio4

Cycle time: no flow control=120ns IORDY flow control=120ns

...

The next section of the output describes the features available on a
drive, and the star (*) indicates if a feature is currently enabled. (To under-
stand vendor-specific features, you might need additional proprietary docu-
mentation.) This is useful when you’re preparing for a forensic acquisition,
because it indicates the status of security feature sets and other things like
the DCO (Device Configuration Overlay feature set).

...

Commands/features:

Enabled Supported:

* SMART feature set

Security Mode feature set

* Power Management feature set

* Write cache

* Look-ahead

* Host Protected Area feature set

* WRITE_BUFFER command

* READ_BUFFER command

* NOP cmd

* DOWNLOAD_MICROCODE

Power-Up In Standby feature set

* SET_FEATURES required to spinup after power up

SET_MAX security extension

* 48-bit Address feature set

* Device Configuration Overlay feature set

* Mandatory FLUSH_CACHE

* FLUSH_CACHE_EXT

* SMART error logging

* SMART self-test

* General Purpose Logging feature set
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* 64-bit World wide name

* WRITE_UNCORRECTABLE_EXT command

* {READ,WRITE}_DMA_EXT_GPL commands

* Segmented DOWNLOAD_MICROCODE

* Gen1 signaling speed (1.5Gb/s)

* Gen2 signaling speed (3.0Gb/s)

* Gen3 signaling speed (6.0Gb/s)

* Native Command Queueing (NCQ)

* Host-initiated interface power management

* Phy event counters

* NCQ priority information

* READ_LOG_DMA_EXT equivalent to READ_LOG_EXT

* DMA Setup Auto-Activate optimization

Device-initiated interface power management

* Software settings preservation

* SMART Command Transport (SCT) feature set

* SCT Write Same (AC2)

* SCT Features Control (AC4)

* SCT Data Tables (AC5)

unknown 206[12] (vendor specific)

unknown 206[13] (vendor specific)

unknown 206[14] (vendor specific)

...

The next section of the hdparm output provides more detail about the
currently active security features, which are important when you’re deter-
mining if a drive is locked or encrypted. The time needed for a secure erase
is also a rough estimate of how long an acquisition might take (if the subject
drive is the performance bottleneck).

...

Security:

Master password revision code = 65534

supported

not enabled

not locked

not frozen

not expired: security count

supported: enhanced erase

324min for SECURITY ERASE UNIT. 324min for ENHANCED SECURITY ERASE UNIT.

...

The final section of the hdparm output displays the WWN again, but
this time it’s broken down into the NAA (which describes the rest of the
WWN), the IEEE OUI assigned vendor ID, and the rest of the WWN (which
is unique to the drive).
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...

Logical Unit WWN Device Identifier: 50014ee25fcfe40c

NAA : 5

IEEE OUI : 0014ee

Unique ID : 25fcfe40c

Checksum: correct

The hdparm output contains a number of items of interest to forensic
investigators, either for documentation or as information for further anal-
ysis. To include the entire output of hdparm -I in a forensic report, you can
redirect it to a text file.

A similar tool for querying SCSI drives is sdparm, which you can use
to access SCSI mode pages. Running sdparm with the flags -a -l retrieves a
verbose list of disk parameters. A more concise query using sdparm -i can
extract the Vital Product Data (VPD), which provides unique identifying
information about the make, model, and serial number of SCSI and SAS
drives.

Extract SMART Data with smartctl
SMART was developed in the early 1990s to help monitor hard disks
and predict failures. It was added to the SCSI-3 standard in 1995(SCSI-3
standard: X3T10/94-190 Rev 4) and the ATA-3 standard in 1997 (ATA-3
standard: X3.298-1997). Because certain details about the disk hardware
may be of value in forensic investigations, in this section, you’ll learn several
techniques to extract SMART information about the disk hardware.

The smartctl command is part of the smartmontools package and
provides access to the SMART interface built into nearly all modern hard
drives. The smartctl command queries attached ATA, SATA, SAS, and SCSI
hardware.

SMART provides a number of variables and statistics about a disk, some
of which could be of interest to a forensic investigator. For example:

• Statistics about errors on the disk and the overall health of the disk

• Number of times the disk was powered on

• Number of hours the disk was in operation

• Number of bytes read and written (often expressed in gigabytes)

• Various SMART logs (temperature history, and so on)2

The following example shows SMART data requested from a drive. The
listing is annotated with comments relevant to forensic investigators.

The -x flag instructs smartctl to print all available information. The
first block of output is the information section, which provides unique

2. SMART statistics and logs available vary among hard disk vendors.
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identifying information about the drive. You can also retrieve most of
this information using other tools, such as hdparm, as shown in previous
examples.

# smartctl -x /dev/sda

smartctl 6.4 2014-10-07 r4002 [x86_64-linux-4.2.0-22-generic] (local build)

Copyright (C) 2002-14, Bruce Allen, Christian Franke, www.smartmontools.org

=== START OF INFORMATION SECTION ===

Model Family: Western Digital Green

Device Model: WDC WD20EZRX-00D8PB0

Serial Number: WD-WCC4NDA2N98P

LU WWN Device Id: 5 0014ee 25fcfe40c

Firmware Version: 80.00A80

User Capacity: 2,000,398,934,016 bytes [2.00 TB]

Sector Sizes: 512 bytes logical, 4096 bytes physical

Rotation Rate: 5400 rpm

Device is: In smartctl database [for details use: -P show]

ATA Version is: ACS-2 (minor revision not indicated)

SATA Version is: SATA 3.0, 6.0 Gb/s (current: 6.0 Gb/s)

Local Time is: Thu Jan 7 12:33:43 2016 CET

SMART support is: Available - device has SMART capability.

SMART support is: Enabled

AAM feature is: Unavailable

APM feature is: Unavailable

Rd look-ahead is: Enabled

Write cache is: Enabled

ATA Security is: Disabled, NOT FROZEN [SEC1]

Wt Cache Reorder: Enabled

...

The following SMART data section shows the health of the drive and
the results of self-tests. An unhealthy drive is an early warning of possible
acquisition issues. Additional SMART capabilities are then listed.

...

=== START OF READ SMART DATA SECTION ===

SMART overall-health self-assessment test result: PASSED

General SMART Values:

Offline data collection status: (0x82) Offline data collection activity

was completed without error.

Auto Offline Data Collection: Enabled.

Self-test execution status: ( 0) The previous self-test routine completed

without error or no self-test has ever

been run.

Total time to complete Offline

data collection: (30480) seconds.
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Offline data collection

capabilities: (0x7b) SMART execute Offline immediate.

Auto Offline data collection on/off support.

Suspend Offline collection upon new

command.

Offline surface scan supported.

Self-test supported.

Conveyance Self-test supported.

Selective Self-test supported.

SMART capabilities: (0x0003) Saves SMART data before entering

power-saving mode.

Supports SMART auto save timer.

Error logging capability: (0x01) Error logging supported.

General Purpose Logging supported.

Short self-test routine

recommended polling time: ( 2) minutes.

Extended self-test routine

recommended polling time: ( 307) minutes.

Conveyance self-test routine

recommended polling time: ( 5) minutes.

SCT capabilities: (0x7035) SCT Status supported.

SCT Feature Control supported.

SCT Data Table supported.

...

The next section provides more statistics about the drive. Of possible
forensic interest here are statistics on the history of the drive usage; for
example, the cumulative number of hours the drive has been powered
on (Power_On_Hours) and how many times the drive has been powered up
(Power_Cycle_Count). Both attributes may correlate with the PC from where
they were taken. The total logical block addresses (LBAs) read and written
indicates the drive volume usage in the past.

...

SMART Attributes Data Structure revision number: 16

Vendor Specific SMART Attributes with Thresholds:

ID# ATTRIBUTE_NAME FLAGS VALUE WORST THRESH FAIL RAW_VALUE

1 Raw_Read_Error_Rate POSR-K 200 200 051 - 0

3 Spin_Up_Time POS--K 181 180 021 - 5908

4 Start_Stop_Count -O--CK 100 100 000 - 61

5 Reallocated_Sector_Ct PO--CK 200 200 140 - 0

7 Seek_Error_Rate -OSR-K 200 200 000 - 0

9 Power_On_Hours -O--CK 099 099 000 - 989

10 Spin_Retry_Count -O--CK 100 253 000 - 0

11 Calibration_Retry_Count -O--CK 100 253 000 - 0

12 Power_Cycle_Count -O--CK 100 100 000 - 59
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192 Power-Off_Retract_Count -O--CK 200 200 000 - 33

193 Load_Cycle_Count -O--CK 199 199 000 - 3721

194 Temperature_Celsius -O---K 119 110 000 - 31

196 Reallocated_Event_Count -O--CK 200 200 000 - 0

197 Current_Pending_Sector -O--CK 200 200 000 - 4

198 Offline_Uncorrectable ----CK 200 200 000 - 4

199 UDMA_CRC_Error_Count -O--CK 200 200 000 - 0

200 Multi_Zone_Error_Rate ---R-- 200 200 000 - 4

||||||_ K auto-keep

|||||__ C event count

||||___ R error rate

|||____ S speed/performance

||_____ O updated online

|______ P prefailure warning

...

The next section is the log directory, which describes the SMART logs
available on the drive. The logs are included in the smartctl -x output with
repeating entries removed (“skipped”). Some of these logs may be of inter-
est in a forensic investigation.

...

General Purpose Log Directory Version 1

SMART Log Directory Version 1 [multi-sector log support]

Address Access R/W Size Description

0x00 GPL,SL R/O 1 Log Directory

0x01 SL R/O 1 Summary SMART error log

0x02 SL R/O 5 Comprehensive SMART error log

0x03 GPL R/O 6 Ext. Comprehensive SMART error log

0x06 SL R/O 1 SMART self-test log

0x07 GPL R/O 1 Extended self-test log

0x09 SL R/W 1 Selective self-test log

0x10 GPL R/O 1 SATA NCQ Queued Error log

0x11 GPL R/O 1 SATA Phy Event Counters log

0x80-0x9f GPL,SL R/W 16 Host vendor specific log

0xa0-0xa7 GPL,SL VS 16 Device vendor specific log

0xa8-0xb7 GPL,SL VS 1 Device vendor specific log

0xbd GPL,SL VS 1 Device vendor specific log

0xc0 GPL,SL VS 1 Device vendor specific log

0xc1 GPL VS 93 Device vendor specific log

0xe0 GPL,SL R/W 1 SCT Command/Status

0xe1 GPL,SL R/W 1 SCT Data Transfer

...

The next section of log information displays the results of self-tests.
Failed self-tests are an early warning that the acquisition could have issues.
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...

SMART Extended Comprehensive Error Log Version: 1 (6 sectors)

No Errors Logged

SMART Extended Self-test Log Version: 1 (1 sectors)

Num Test_Description Status Remaining LifeTime(hours) LBA_of...

# 1 Short offline Completed without error 00% 0 -

SMART Selective self-test log data structure revision number 1

SPAN MIN_LBA MAX_LBA CURRENT_TEST_STATUS

1 0 0 Not_testing

2 0 0 Not_testing

3 0 0 Not_testing

4 0 0 Not_testing

5 0 0 Not_testing

Selective self-test flags (0x0):

After scanning selected spans, do NOT read-scan remainder of disk.

If Selective self-test is pending on power-up, resume after 0 minute delay.

SCT Status Version: 3

SCT Version (vendor specific): 258 (0x0102)

SCT Support Level: 1

Device State: Active (0)

...

The next output block describes a drive’s temperature statistics. This
information could be useful to monitor during the acquisition process. For
investigation purposes, the minimum and maximum temperatures reached
during the drive’s lifetime might be of interest if correlated with environ-
mental factors linked to a suspect’s PC. Vendor-specific SMART data is not
part of the generic SMART standard, and you may need additional propri-
etary documentation to understand it.

...

Current Temperature: 31 Celsius

Power Cycle Min/Max Temperature: 22/31 Celsius

Lifetime Min/Max Temperature: 20/41 Celsius

Under/Over Temperature Limit Count: 0/0

Vendor specific:

01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

...

Some SMART-capable drives maintain a log of temperature history. You
can calculate the history from the interval multiplied by the history size. In
this example, 478 minutes are roughly 8 hours of temperature data. Some
disks have a temperature-logging interval set much higher (one hour or
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more). The temperature-logging interval is potentially useful for investiga-
tions: if a disk were seized immediately after a crime, known temperature
variations might be correlated with the disk temperature record.

...

SCT Temperature History Version: 2

Temperature Sampling Period: 1 minute

Temperature Logging Interval: 1 minute

Min/Max recommended Temperature: 0/60 Celsius

Min/Max Temperature Limit: -41/85 Celsius

Temperature History Size (Index): 478 (175)

Index Estimated Time Temperature Celsius

176 2016-01-07 05:00 ? -

... ..(300 skipped). .. -

477 2016-01-07 10:01 ? -

0 2016-01-07 10:02 29 **********
1 2016-01-07 10:03 30 ***********

... ..( 68 skipped). .. ***********
70 2016-01-07 11:12 30 ***********
71 2016-01-07 11:13 31 ************
... ..(103 skipped). .. ************
175 2016-01-07 12:57 31 ************
...

The final section of output in this example shows statistics of physical
errors. It can be useful to compare these statistics with values during or
at the end of an acquisition to ensure no physical errors arose during the
process.

...

SCT Error Recovery Control command not supported

Device Statistics (GP/SMART Log 0x04) not supported

SATA Phy Event Counters (GP Log 0x11)

ID Size Value Description

0x0001 2 0 Command failed due to ICRC error

0x0002 2 0 R_ERR response for data FIS

0x0003 2 0 R_ERR response for device-to-host data FIS

0x0004 2 0 R_ERR response for host-to-device data FIS

0x0005 2 0 R_ERR response for non-data FIS

0x0006 2 0 R_ERR response for device-to-host non-data FIS

0x0007 2 0 R_ERR response for host-to-device non-data FIS

0x0008 2 0 Device-to-host non-data FIS retries

0x0009 2 6 Transition from drive PhyRdy to drive PhyNRdy

0x000a 2 6 Device-to-host register FISes sent due to a COMRESET

0x000b 2 0 CRC errors within host-to-device FIS
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0x000f 2 0 R_ERR response for host-to-device data FIS, CRC

0x0012 2 0 R_ERR response for host-to-device non-data FIS, CRC

0x8000 4 14532 Vendor specific

Other SMART logs might exist depending on the drive vendor. Consult
the smartctl(8) manual page for more information about additional flags
and queries that you can send to attached subject drives.

Enable Access to Hidden Sectors
Forensic literature often includes handling the HPA and DCO as part of
the imaging process. Indeed, some imaging software has the capability to
detect and remove these hidden areas at acquisition time. This book posi-
tions the detection and removal of the HPA/DCO as part of the prepa-
ration process, not the actual imaging. There is no special technique to
image these hidden areas once they’ve been made accessible. They’re sim-
ply disk sectors protected by drive configuration parameters. It is a simple
preparatory step to make them available for a subsequent imaging process.
Removing the HPA or DCO modifies the drive’s configuration, but it does
not modify its contents.3

This section also covers drive maintenance sectors and service areas on
a disk, but this topic is mentioned only briefly, because these areas are not
easily accessible using common open source tools.

Remove a DCO
The DCO was developed to allow PC system manufacturers to make differ-
ent drive models appear to have the same features. Using a DCO, certain
features can be disabled, and the capacity of a drive (number of usable sec-
tors) can be reduced to fit a vendor’s requirements. Identifying and remov-
ing the DCO is standard forensic practice when you’re analyzing a suspect
drive.

The DCO is a general configuration overlay, and multiple features can
be overridden. It does not only refer to the number of sectors on a drive.

Two hdparm commands can determine if a DCO exists and provide the
number of real sectors available. The first command determines if the drive
has the DCO feature set enabled. In this example, the current size of the
disk is reported to be 474GB or 926773168 sectors (512-byte sector size) and
the asterisk (*) next to Device Configuration Overlay feature set indicates it is
active:

# hdparm -I /dev/sdl

/dev/sdl:

3. For a paper on the forensics of HPA and DCO areas, see Mayank R. Gupta, Michael D.
Hoeschele, and Marcus K. Rogers, “Hidden Disk Areas: HPA and DCO,” International Journal
of Digital Evidence 5, no. 1 (2006).
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ATA device, with non-removable media

Model Number: WDC WD5003AZEX-00MK2A0

...

LBA48 user addressable sectors: 926773168

Logical Sector size: 512 bytes

Physical Sector size: 4096 bytes

device size with M = 1024*1024: 452525 MBytes

device size with M = 1000*1000: 474507 MBytes (474 GB)

...

* Device Configuration Overlay feature set

...

The second command specifically queries for the features modified by
a DCO:

# hdparm --dco-identify /dev/sdl

/dev/sdl:

DCO Revision: 0x0002

The following features can be selectively disabled via DCO:

Transfer modes:

udma0 udma1 udma2 udma3 udma4 udma5 udma6

Real max sectors: 976773168

ATA command/feature sets:

security HPA

SATA command/feature sets:

NCQ interface_power_management SSP

In this example, “Real max sectors” is 976773168, which is 25GB less
than the reported size, indicating the existence of a DCO. The reported size
of 474GB is also a mismatch to the 500GB label on the physical drive. You
can confirm the expected number of sectors by checking the drive model
number with the vendor’s product documentation.

Having confirmed the existence of a DCO using hdparm, you can use
the same command to remove it. First, run hdparm to ensure the drive config-
uration is not locked or frozen:

# hdparm -I /dev/sdl

/dev/sdl:

ATA device, with non-removable media

Model Number: WDC WD5003AZEX-00MK2A0

...

Security:

...

not locked
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not frozen

...

Some BIOSes or OSes will issue an ATA command to freeze the DCO
configuration during boot to prevent malicious changes. In this case, hot
plugging the drive power cable after booting should cause the drive to
spin up in an unfrozen state.4 Many USB bridges automatically spin up an
attached disk in an unfrozen state. If the drive is locked, refer to “Identify
and Unlock ATA Password-Protected Disks” on page 126.

Once the drive is ready, you can send the appropriate ATA command to
reset the DCO, making the additional hidden sectors available.

Simply running the hdparm command with the --dco-restore option will
do nothing but generate a warning message:

# hdparm --dco-restore /dev/sdl

/dev/sdl:

Use of --dco-restore is VERY DANGEROUS.

You are trying to deliberately reset your drive configuration back to the factory

defaults.

This may change the apparent capacity and feature set of the drive, making all data

on it inaccessible.

You could lose *everything*.

Please supply the --yes-i-know-what-i-am-doing flag if you really want this.

Program aborted.

Following the instructions, and including the --yes-i-know-what-i-am-doing

flag, you can remove the DCO as follows:

# hdparm --yes-i-know-what-i-am-doing --dco-restore /dev/sdl

/dev/sdl:

issuing DCO restore command

Now when you run the hdparm -I command again, the full sectors will be
revealed.

# hdparm -I /dev/sdl

/dev/sdl:

ATA device, with non-removable media

Model Number: WDC WD5003AZEX-00MK2A0

...

LBA48 user addressable sectors: 976773168

4. Some mainboards require SATA ports to be configured for hot plugging in the BIOS.
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Logical Sector size: 512 bytes

Physical Sector size: 4096 bytes

device size with M = 1024*1024: 476940 MBytes

device size with M = 1000*1000: 500107 MBytes (500 GB)

...

Now you can acquire the drive or analyze it with forensic tools. It’s
important to note the DCO hidden area’s exact sector offset, which will be
useful when you want to extract only the DCO sectors for separate analysis.

Removing the DCO using hdparm can be tricky. Read the hdparm(8) man-
ual page if a particular drive is causing problems with the removal commands.

The tableau-parm tool has an -r flag that should remove the DCO (and
possibly the HPA) from the drive.

Remove an HPA
The HPA was developed to allow PC system manufacturers to store data in
a way that is normally inaccessible to a customer. Examples of HPA uses
include diagnostic tools, recovery partitions, and so on. These special areas
are often activated with BIOS hotkeys during startup.

You can detect the existence of an HPA using a single hdparm command:

# hdparm -N /dev/sdl

/dev/sdl:

max sectors = 879095852/976773168, HPA is enabled

Here HPA is enabled indicates that an HPA exists. The max sectors

provides the visible sector count followed by the real sector count. In
this example, subtracting the two sector counts reveals a 50GB difference,
which is the host protected area.

You can temporarily remove the HPA using the same command (as
with the DCO removal, a warning message appears, and you need to use the
--yes-i-know-what-i-am-doing flag):

# hdparm --yes-i-know-what-i-am-doing -N 976773168 /dev/sdl

/dev/sdl:

setting max visible sectors to 976773168 (temporary)

max sectors = 976773168/976773168, HPA is disabled

The result of this command is only temporary; the original HPA will be
in place next time you cycle the drive’s power. To make the change perma-
nent, add p to the sector count number as follows:

# hdparm --yes-i-know-what-i-am-doing -N p976773168 /dev/sdl

/dev/sdl:
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setting max visible sectors to 976773168 (permanent)

max sectors = 976773168/976773168, HPA is disabled

The HPA is now removed, and you can acquire the drive or analyze it
with forensic tools. It’s important to note the HPA hidden area’s exact sec-
tor offset, which will be useful when you want to extract only the HPA sectors
for separate analysis.

Removing the HPA with hdparm can be tricky. Read the hdparm(8)
manual page if a particular drive is causing problems with the removal
commands.

Previously, the Sleuth Kit forensic suite had two utilities to detect and
temporarily remove the HPA: disk_stat and disk_sreset. These were removed
in 2009 because other tools, such as hdparm, included the same features.

Drive Service Area Access
Hard disk drives need to store information such as SMART logs, ATA
passwords, bad sector lists, firmware, and other persistent information.
This information is typically stored on the disk platters in reserved, user-
inaccessible sectors called the system area (also known as the service area,
negative sectors, or maintenance sectors). Access to this area is done through
proprietary vendor commands, which are usually not public.

There is no common systematic approach to access a disk’s system areas.
Each disk manufacturer implements system areas differently, there are no
industry standards, and there are few publicly available tools. Some special-
ized commercial tools exist, such as Ace Laboratory’s PC-3000 (http://www
.acelaboratory.com/catalog/) or Atola Insight Forensic (http://www.atola.com/
products/insight/supported-drives.html), which can access service areas of many
disks.5, 6

In some cases, it’s possible to bypass the standard SATA, USB, or SAS
interfaces and access storage media using debug or diagnostic ports built
into the drive electronics. These interfaces may use serial RS-232/TTL,
JTAG for chip access,7 or undocumented vendor proprietary commands
over the regular drive interface. Media access in this manner is not standard
across manufacturers or even across drives from the same manufacturer.

For illustration purposes, the following example shows reading informa-
tion over a serial interface on a Seagate Barracuda ST500DM002 drive. The
drive has a serial port next to the SATA data plug and can be accessed with a
USB 3V TTL cable. Standard serial terminal emulation software such as the
Linux cu (connect UNIX) command is used in this example.

5. For research into the possibility of hiding data in the service sectors, see Ariel Berkman,
“Hiding Data in Hard-Drive’s Service Areas,” Recover Information Technologies LTD, February
14, 2013, http://www.recover.co.il/SA-cover/SA-cover.pdf .
6. Todd G. Shipley and Bryan Door, “Forensic Imaging of Hard Disk Drives: What We Thought
We Knew,” Forensic Focus, January 27, 2012, http://articles.forensicfocus.com/2012/01/27/
forensic-imaging-of-hard-disk-drives-what-we-thought-we-knew-2/ .
7. The Joint Test Action Group (JTAG) defines a standardized debug interface for accessing
electronic components.
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Figure 5-1 shows a photo of the USB cable connected to the pin block at
the back of the drive.

Figure 5-1: Serial port access to disk firmware

NOTE Warning: This method should not be used without specialized training or tools. There
is a risk of physically damaging the disk beyond repair.

After connecting a terminal and powering on the drive, a boot message
is displayed. Entering CTRL-Z puts the drive in diagnostic mode with a com-
mand prompt from the drive firmware (similar to UNIX terminals or analog
modems).

$ cu -s 38400 -l /dev/ttyUSB0

Connected.

Boot 0x10M

Spin Up[0x00000000][0x0000B67C][0x0000BA10]

Trans.

Rst 0x10M

MC Internal LPC Process

Spin Up

(P) SATA Reset

ASCII Diag mode

F3 T>
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From this diagnostic interface, detailed underlying information about
the disk can be retrieved. In the following example, a Level 2 x command
reveals the internal physical drive geometry and partitioning for User and
System areas:

F3 2>x

User Partition

LBAs 000000000000-0000075D672E

PBAs 000000000000-0000076F8EDD

HdSkew 006E, CylSkew 002D

ZonesPerHd 11

Head 0, PhyCyls 000000-040001, LogCyls 000000-03F19C

Physical Logical Sec Sym Sym Data

Zn Cylinders Cylinders Track Wedge Track Rate

00 000000-0003FB 000000-0003FB 010F 0D77 000F4D40 1263.750

01 0003FC-005A41 0003FC-005A41 0130 0F1A 00112A40 1417.500

...

Head 1, PhyCyls 000000-039877, LogCyls 000000-038B61

Physical Logical Sec Sym Sym Data

Zn Cylinders Cylinders Track Wedge Track Rate

00 000000-00035B 000000-00035B 0130 0F16 001124A0 1415.625

01 00035C-004E72 00035C-004E72 0145 1025 00125E80 1516.875

...

System Partition

LBAs 000000000000-0000000972CF

PBAs 000000000000-00000009811F

HdSkew 006E, CylSkew 0018

ZonesPerHd 02

Head 0, PhyCyls 040002-040155, LogCyls 000000-000152

Physical Logical Sec Sym Sym Data

Zn Cylinders Cylinders Track Wedge Track Rate

00 040002-0400AB 000000-0000A9 0394 063D 00072AE0 592.500

01 0400AC-040155 0000AA-000152 0394 063D 00072AE0 592.500

Head 1, PhyCyls 039878-0399CB, LogCyls 000000-000152

Physical Logical Sec Sym Sym Data

Zn Cylinders Cylinders Track Wedge Track Rate

124 Chapter 5



00 039878-039921 000000-0000A9 0394 063D 00072AE0 592.500

01 039922-0399CB 0000AA-000152 0394 063D 00072AE0 592.500

Diagnostic interfaces, such as this one, can provide access to disk sectors
in the system areas and other information that is not otherwise accessible.

Online forums exist that discuss low-level disk access and recovery, for
example, HDDGURU (http://forum.hddguru.com/index.php) and The HDD
Oracle (http://www.hddoracle.com/index.php).

Methods of accessing the underlying areas of SSD or flash storage media
include the physical removal (desoldering) of memory chips, sometimes
called chip-off. The memory contents from these chips can then be extracted
and reconstructed into readable blocks of data.

Some devices (Internet-of-Things, mobile devices, and so on) may have
a JTAG interface providing access to memory contents. JTAG is a well-
documented standard and can be applied in a forensic context to extract
data (see http://www.evidencemagazine.com/index.php?option=com_content&
task=view&id=922).

Covering these techniques in more depth is beyond the scope of this
book. I’ve mentioned JTAG interfaces and Serial access to disks for illustra-
tion purposes to make you aware that such techniques exist in the forensics
industry.

ATA Password Security and Self-Encrypting Drives
This section covers the standard security features implemented by the disk
vendors. These features include drive locking, password protection, self-
encrypting drives, and other security mechanisms. Although some of the
features discussed here are not widely used, they are still important to under-
stand in a professional forensic lab setting.

Password recovery techniques are not described in detail here. The
examples demonstrate how to attach password-protected media to an acqui-
sition host in preparation for imaging. It is assumed that passwords are
already known.

Methods of acquiring passwords are beyond the scope of this book, but
recovery techniques may include the following:

• Brute force, exhaustively attempting multiple passwords until the cor-
rect one is found.

• Finding passwords hidden or stored in an accessible location.

• Knowledge of password reuse across different accounts or devices.
Recovery from one location provides access to all.

• Depending on the jurisdiction, a person may be legally compelled to
provide passwords.

• The password may be volunteered by a friendly or cooperative owner
(the victim perhaps) or a cooperating accomplice.

• Enterprise IT environments may have key escrow or backups in place.
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Identify and Unlock ATA Password-Protected Disks
The ATA/ATAPI commands (http://www.t13.org/) specify a security fea-
ture set that restricts access to a disk using passwords. When this feature is
enabled, the firmware prevents the execution of certain ATA commands,
including access to content, until the required password is provided. This is
only an access control feature and doesn’t use encryption to protect data on
the disk.

The hdparm tool can determine if a disk has the security feature set
enabled. For example:

# hdparm -I /dev/sda

...

Commands/features:

Enabled Supported:

...

* Security Mode feature set

...

Security:

Master password revision code = 1

supported

enabled

locked

not frozen

not expired: security count

supported: enhanced erase

Security level high

60min for SECURITY ERASE UNIT. 60min for ENHANCED SECURITY ERASE UNIT.

...

The Commands/features: information indicates the Security Mode feature set

exists and is enabled, and the Security: information also confirms the fea-
ture is supported and enabled.

If Security: has enabled listed, a user password has been set, and the drive
will be locked on boot. If the drive is locked, as in the preceding example,
access to the drive is prevented until a correct password is provided. The
OS may generate a device error or failed command error as it tries to access
the disk. The T13 standard outlines which commands are allowed when a
disk is locked. Access to a number of commands, including to query SMART
information, is still possible when a disk is locked.

Two passwords can be set, user and master. If the user password is set,
security is enabled (as shown in the preceding example). Setting the master
password alone does not enable security.

If a master password has never been set (it may still have a factory
default password set), the Master password revision code will be set to 65534.
The first time the master password is set, this value is set to 1 and incre-
mented each time the master password is set again.
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Two security levels control how correct passwords behave. The Security

level refers to the MASTER PASSWORD CAPABILITY bit in the T13 standard and can
be “high” or “maximum.” If the security level is set to high, either user or
master passwords can unlock the drive. If the security level is set to maxi-
mum, the master password will allow security erase commands but only the
user password can unlock the drive.

Some PCs might issue a security freeze command after booting to pre-
vent further security commands from being sent, even with correct pass-
words (to prevent malicious password-setting attacks). The Security output
from hdparm will indicate if a drive is frozen. Many USB bridges automati-
cally spin up an attached disk in an unfrozen state, but if you still have diffi-
culty, here are several possibilities to try:

• Checking the BIOS for settings to enable/disable the freeze command

• Using a forensic boot CD that prevents freeze commands from being
issued

• Attaching the disk to a separate controller card (not built into the
mainboard)

• Hot plugging the disk into the system (if supported)

• Using a mainboard that does not issue freeze commands

If you know the user password and the drive security is not frozen, you
can unlock the drive as follows:

# hdparm --security-unlock "mysecret99" /dev/sdb

security_password="mysecret99"

/dev/sdb:

Issuing SECURITY_UNLOCK command, password="mysecret99", user=user

By default, the user password is provided using hdparm, and the master
password needs to be explicitly specified with an additional command line
parameter. If you know the master password and the security level is set to
high, you can use the master password to unlock the drive as follows:

# hdparm --user-master m --security-unlock "companysecret22" /dev/sdb

security_password="companysecret22"

/dev/sdb:

Issuing SECURITY_UNLOCK command, password="companysecret22", user=master

If no passwords are known, access to the disk is not possible with regular
tools. The password information is stored on the service/system areas of a
disk and is generally not accessible without special hardware or tools. How-
ever, several further options are available and are discussed here.
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The master password might be set to a factory default and can be used
to gain access to the drive (if the security level is set to high and not maxi-
mum). You can easily find lists of factory default master passwords on the
internet.

Using brute force to identify either the master or user password is inef-
ficient, because the drive must be reset after five failed attempts. However,
if you have a small set of likely passwords, multiple attempts become feasible
and may lead to lucky success.

Specialized data recovery companies provide services and hardware tools
that can recover or reset ATA Security Feature Set passwords from the ser-
vice areas of a disk. Success is not guaranteed for all disks, but data recovery
firms often list the disks they do support. In some cases, you might have to
ship the disk to the firm’s laboratory, which may have chain-of-custody impli-
cations. See “Drive Service Area Access” on page 122 for more information.

The hard disk vendor may be able to provide assistance to disable
or reset the ATA password. This will depend on the cooperation of the
drive vendor, the ability to prove ownership of the disk and its contents,
the authority of the requesting party, and the motivation for recovering
the data.

Hardware and firmware hacks and published methods by researchers
may exist that provide access for certain hard drive models. The security
research community is regularly finding innovative ways to access and mod-
ify data in hard-to-reach places.

Identify and Unlock Opal Self-Encrypting Drives
Self-encrypting drives (SEDs) are a form of full-disk encryption (FDE). Unlike
software-based FDE (TrueCrypt, FileVault, LUKS, and so on) where the OS
manages the encryption, SEDs have encryption capabilities built directly
into the drive electronics and firmware. SEDs are OS agnostic and are
based on vendor-independent standards. The international body respon-
sible for defining the standard is the Trusted Computing Group (TCG;
http://www.trustedcomputinggroup.org/). The standard is the TCG Storage
Security Subsystem Class: Opal, Specification Version 2.00.

This section identifies drives with Opal encryption and describes how
appropriate keys can be used to unlock the drive. The recovery of encryp-
tion keys is outside the scope of this book. The examples shown here assume
the key is known.

A physical examination of the drive can already indicate if it is an Opal
SED. The existence of a Physical Secure ID (PSID) string printed on the label
of the drive is shown in Figure 5-2. This string is used for the Opal RevertSP
feature, which generates a new key securely, destroying all data and resetting
the drive to its original factory state. The PSID cannot be queried from the
drive and must be physically read or scanned if a QR code exists. The exis-
tence of a PSID string does not mean the drive is locked and passwords are
set; it just indicates the drive supports Opal full-disk encryption.
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Figure 5-2: Opal SED PSID

Full-disk encryption has a chicken-and-egg problem. If an entire drive is
encrypted, including the boot sector, how can the system execute the master
boot record (MBR) and ask for a password or other security credentials?
The solution was to implement a shadow MBR and store it in the system
area of a disk (the same place where SMART data, bad block lists, and so
on are stored). When an Opal disk is in a locked state, only the shadow MBR
is visible to the host. It is a group of unencrypted sectors (can be large—
150MB in size, for example) that is executed as a normal MBR (the host is
completely unaware that it is using a shadow MBR). This alternate boot area
can execute code to request a password, access a Trusted Platform Module
(TPM) chip or smartcard, or get other credentials. Once the disk has been
unlocked, the proper MBR becomes visible, and a normal boot process can
begin.

An open source command line tool was created to manage Opal
SED encryption under Linux. Originally called msed, it was available at
https://github.com/r0m30/msed/ , but the tool was recently renamed sedutil-cli
and moved to https://github.com/Drive-Trust-Alliance/sedutil/ . This tool is still
under development and may not work on all drives. Follow the instructions
carefully and ensure that libata.allow_tpm is enabled in the kernel.

The following command scans the local system for all Opal-compliant
SED drives. Out of four attached drives, one disk is detected as Opal ver-
sion 2:

# sedutil-cli --scan

Scanning for Opal compliant disks

/dev/sda 2 Crucial_CT250MX200SSD1 MU01

/dev/sdb No WDC WD20EZRX-00D8PB0 80.00A80

/dev/sdc No INTEL SSDSA2CW300G3 4PC10302

/dev/sdd No Kingston SHPM2280P2H/240G OC34L5TA

No more disks present ending scan

You can query the drive to find information about the Opal status,
including if a disk is encrypted, locked, or has a shadow MBR (all three are
shown in this example):

# sedutil-cli --query /dev/sda

/dev/sda ATA Crucial_CT250MX200SSD1 MU01 15030E69A241

...

Locking function (0x0002)
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Locked = Y, LockingEnabled = Y, LockingSupported = Y, MBRDone = N,

MBREnabled = Y, MediaEncrypt = Y

...

Two commands can be issued: one to disable locking and the second
to inform the disk that the shadow MBR is not needed (MBR is “Done”). In
this example, xxmonkey is the password:

# sedutil-cli --disableLockingRange 0 xxmonkey /dev/sda

- 16:33:34.480 INFO: LockingRange0 disabled

# sedutil-cli --setMBRDone on xxmonkey /dev/sda

- 16:33:54.341 INFO: MBRDone set on

At this point, a kernel message (dmesg) might show a change in avail-
able devices. The status in this example now shows the following:

# sedutil-cli --query /dev/sda

/dev/sda ATA Crucial_CT250MX200SSD1 MU01 15030E69A241

...

Locking function (0x0002)

Locked = N, LockingEnabled = Y, LockingSupported = Y, MBRDone = Y,

MBREnabled = Y, MediaEncrypt = Y

...

The drive is no longer locked, and the shadow MBR is no longer visible.
The proper MBR and the rest of the decrypted disk are available, and they
can be accessed with regular forensic tools. Now the partition table of a
Linux installation becomes visible, as shown in this example:

# mmls /dev/sda

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000002047 0000002048 Unallocated

02: 00:00 0000002048 0471887871 0471885824 Linux (0x83)

03: ----- 0471887872 0471889919 0000002048 Unallocated

04: Meta 0471889918 0488396799 0016506882 DOS Extended (0x05)

05: Meta 0471889918 0471889918 0000000001 Extended Table (#1)

06: 01:00 0471889920 0488396799 0016506880 Linux Swap / Solaris x86 (0x82)

07: ----- 0488396800 0488397167 0000000368 Unallocated

A locked drive that has no shadow MBR enabled will produce multiple
error messages in the kernel dmesg output.
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The simple example described in this section was provided for illustra-
tion purposes only. Some Opal disks may behave differently with this tool.
In real scenarios, the key might not be a simple password but instead be
tied to the TPM or some other enterprise security mechanism. If the wrong
commands are given in this situation, the data on the disk can be irrevocably
destroyed (in an instant if the key is destroyed).

From a forensics perspective, it may be useful to image the shadow MBR
for analysis as well. It could contain interesting artifacts from the time the
disk encryption was set up. It is also conceivable that data could be hidden
in the shadow MBR region of Opal-capable drives.

Encrypted Flash Thumb Drives
USB thumb drives sold as “secure” devices often come with a proprietary
software encryption solution provided by the vendor. Some drives offer
OS-independent encryption with authentication using keypads, fingerprint
readers, or smartcards (see Figure 5-3).

Figure 5-3: Encrypted USB sticks

Proprietary solutions might not have a compatible tool to manage
access, making it difficult to acquire decrypted data with Linux. Devices
with an onboard authentication mechanism should appear as a normal USB
storage device after authentication.

Secure thumb drives that are locked may behave differently when
attached to a host. Some don’t provide any indication that they’ve been
plugged into the host. Some appear as a removable media device without
media (like a memory card reader). Some will appear as a CD-ROM and
have software available to run or install, which manages the drive.

Larger hardware-encrypted external drives also exist and may require
a pin to unlock. An exmple of such a drive is described in Chapter 7 (see
Figure 7-1 on page 216).
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Attach Removable Media
This section covers the attachment of devices that use removable storage
media. The most common examples of removable media are optical discs,
memory cards, and magnetic tapes. In a way, attaching removable storage
media to an acquisition host occurs twice. First the device electronics are
attached, and then in an additional step, the removable media is inserted.
Let’s begin with a discussion on optical media drives.

Optical Media Drives
Optical drives are typically attached internally via SATA or externally via
USB. The drives appear in the Linux device tree but without media. Run-
ning forensic commands on an empty drive produces obvious results, as
shown here:

# mmls /dev/cdrom

Error opening image file (raw_open: file "/dev/cdrom" - No medium found)

Two useful commands provide information about the attached drive
and inserted discs. The cd-drive command provides details about an
attached optical drive (internal or external), including various features,
supported media, and so on:

# cd-drive

cd-drive version 0.83 x86_64-pc-linux-gnu

...

CD-ROM drive supports MMC 3

Drive: /dev/cdrom

Vendor : ASUS

Model : BW-16D1HT

Revision : 1.01

Profile List Feature

Blu Ray BD-RE

Blu Ray BD-R random recording

Blu Ray BD-R sequential recording

Blu Ray BD-ROM

DVD+R Double Layer - DVD Recordable Double Layer

DVD+R - DVD Recordable

DVD+RW - DVD Rewritable

DVD-R - Double-layer Jump Recording

DVD-R - Double-Layer Sequential Recording

Re-recordable DVD using Sequential Recording

Re-recordable DVD using Restricted Overwrite

Re-writable DVD

Re-recordable DVD using Sequential recording

Read only DVD
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CD-RW Re-writable Compact Disc capable

Write once Compact Disc capable

Read only Compact Disc capable

...

Removable Medium Feature

Tray type loading mechanism

can eject the medium or magazine via the normal START/STOP command

can be locked into the Logical Unit

...

When you insert a disc into the drive, you can retrieve information
about the media using the cd-info command. The result includes the mode,
format, and information about the publisher:

# cd-info

cd-info version 0.83 x86_64-pc-linux-gnu

Disc mode is listed as: CD-DA

CD-ROM Track List (1 - 1)

#: MSF LSN Type Green? Copy? Channels Premphasis?

1: 00:02:00 000000 data false no

170: 39:42:20 178520 leadout (400 MB raw, 400 MB formatted)

Media Catalog Number (MCN): 0000000000000

TRACK 1 ISRC: 000000000000

Last CD Session LSN: 0

audio status: invalid

__________________________________

CD Analysis Report

CD-ROM with ISO 9660 filesystem

ISO 9660: 154301 blocks, label `SOLARIS_2_5_1_SPARC '

Application: NOT SPECIFIED

Preparer : SOLARIS_PRODUCT_ENGINEERING

Publisher : SUNSOFT_INC

System : SUNSOFT_INC

Volume : SOLARIS_2_5_1_SPARC

Volume Set : SOLARIS_2_5_1_SERIES

You can eject the optical media using the eject shell command.
Using write blockers on optical drives is unnecessary. No timestamps

are updated simply by accessing files on a disc. Modifying an optical
disc requires explicit burn instructions, reducing the risk of accidental
modification.

Magnetic Tape Drives
You can determine a list of attached tape drives using the lshw tool and the
tape class. The output provides information about the drive vendor, serial
number, and device information.

Attaching Subject Media to an Acquisition Host 133



In this example, two tape drives are found (LTO and DAT):

# lshw -class tape

*-tape

description: SCSI Tape

product: LTO-5 HH

vendor: TANDBERG

physical id: 0.0.0

bus info: scsi@13:0.0.0

logical name: /dev/nst0

version: Y629

serial: HU1246T99F

capabilities: removable

configuration: ansiversion=6

*-tape

description: SCSI Tape

product: DAT160

vendor: HP

physical id: 0.0.0

bus info: scsi@15:0.0.0

logical name: /dev/nst1

version: WU8A

serial: HU10123NFH

capabilities: removable

configuration: ansiversion=3

Magnetic tape drives are typically SCSI devices, which you can query
using standard SCSI commands. The standard tool for controlling tapes
is mt, which provides information about the drive status, controls the
position of the tape, and ejects the media. The mt tool can provide basic
information about the tape, but the tapeinfo tool is more comprehensive.
In this example, the mt and tapeinfo tools query the status of an LTO tape
drive with a loaded tape:

# mt -f /dev/nst0 status

SCSI 2 tape drive:

File number=1, block number=0, partition=0.

Tape block size 0 bytes. Density code 0x58 (no translation).

Soft error count since last status=0

General status bits on (81010000):

EOF ONLINE IM_REP_EN

# tapeinfo -f /dev/nst0

Product Type: Tape Drive

Vendor ID: 'TANDBERG'

Product ID: 'LTO-5 HH '

Revision: 'Y629'

Attached Changer API: No
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SerialNumber: 'HU1246T99F'

MinBlock: 1

MaxBlock: 16777215

SCSI ID: 0

SCSI LUN: 0

Ready: yes

BufferedMode: yes

Medium Type: Not Loaded

Density Code: 0x58

BlockSize: 0

DataCompEnabled: yes

DataCompCapable: yes

DataDeCompEnabled: yes

CompType: 0x1

DeCompType: 0x1

Block Position: 166723430

Partition 0 Remaining Kbytes: 1459056

Partition 0 Size in Kbytes: 1459056

ActivePartition: 0

EarlyWarningSize: 0

NumPartitions: 0

MaxPartitions: 1

The tape head is positioned at the second file on the tape (file 1 is after
file 0). The block offset and file offset are useful when you’re forensically
acquiring individual files from a tape.

Using mt, you can rewind tapes and take them offline (eject them):

# mt -f /dev/nst0 status

When a tape device is attached to a Linux system, a number of corre-
sponding devices are created.

# ls -1 /dev/*st0*
/dev/nst0

/dev/nst0a

/dev/nst0l

/dev/nst0m

/dev/st0

/dev/st0a

/dev/st0l

/dev/st0m

The st* devices auto-rewind the tape after each command (which is not
always desired), and the nst* devices are the nonrewinding devices. The a, l,
and m characters represent the same device but with different characteristics
(block size, compression). When you’re performing a forensic acquisition,
you should use the nst* devices (without an additional a, l, or m character).
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Memory Cards
Memory cards typically attach to a host using a USB adapter with multiple
slots for different types of memory cards. When attached, the adapter cre-
ates a removable SCSI device for each slot (even when the slots are empty).
This behavior can be observed in the following dmesg output.

[ 2175.331711] usb 1-7: new high-speed USB device number 10 using xhci_hcd

[ 2175.461244] usb 1-7: New USB device found, idVendor=058f, idProduct=6362

[ 2175.461249] usb 1-7: New USB device strings: Mfr=1, Product=2, SerialNumber=3

[ 2175.461252] usb 1-7: Manufacturer: Generic

[ 2175.461938] usb-storage 1-7:1.0: USB Mass Storage device detected

[ 2175.462143] scsi host15: usb-storage 1-7:1.0

[ 2176.458662] scsi 15:0:0:0: Direct-Access Generic USB SD Reader 1.00

PQ: 0 ANSI: 0

[ 2176.459179] scsi 15:0:0:1: Direct-Access Generic USB CF Reader 1.01

PQ: 0 ANSI: 0

[ 2176.459646] scsi 15:0:0:2: Direct-Access Generic USB SM Reader 1.02

PQ: 0 ANSI: 0

[ 2176.460089] scsi 15:0:0:3: Direct-Access Generic USB MS Reader 1.03

PQ: 0 ANSI: 0

[ 2176.460431] sd 15:0:0:0: Attached scsi generic sg11 type 0

[ 2176.460641] sd 15:0:0:1: Attached scsi generic sg12 type 0

[ 2176.460863] sd 15:0:0:2: Attached scsi generic sg13 type 0

[ 2176.461150] sd 15:0:0:3: Attached scsi generic sg14 type 0

[ 2176.463711] sd 15:0:0:0: [sdj] Attached SCSI removable disk

[ 2176.464510] sd 15:0:0:1: [sdk] Attached SCSI removable disk

[ 2176.464944] sd 15:0:0:2: [sdl] Attached SCSI removable disk

[ 2176.465339] sd 15:0:0:3: [sdm] Attached SCSI removable disk

As you insert media into the slots, the media is made available as a USB
mass storage device with a linear sequence of “sectors,” which you can foren-
sically acquire. Continuing on from the previous example, a memory card
has now been inserted into a slot of the card reader and appears as block
device:

[ 2310.750147] sd 15:0:0:0: [sdj] 7959552 512-byte logical blocks: (4.07 GB/3.79 GiB)

[ 2310.753162] sdj: sdj1

Hardware-querying tools, such as hdparm and smartctl, may produce
unreliable results, because memory cards don’t have the ATA features of
more complex drives with dedicated drive circuitry.

Attach Other Storage
Sometimes storage media is attached to a forensic acquisition host and
behaves in a unique way. In particular, it is useful to know about special
behavior with portable devices, Apple computer systems, and NVME drives.
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Apple Target Disk Mode
TDM allows Apple computers with OpenBoot firmware or newer firmware
to boot into a state where the Mac system appears as an external disk enclo-
sure and the internal disks are available as SCSI target devices. Earlier TDM
implementations used the FireWire bus but have since moved to Thunder-
bolt. You activate this mode by holding down the T key while powering on
the Apple computer.

A Linux machine without a Thunderbolt adapter can use FireWire
to achieve the same result with an adapter. Figure 5-4 shows a photo of a
Thunderbolt-to-FireWire adapter.

Figure 5-4: Thunderbolt to Firewire adapter

Be sure to boot the Apple device (while holding the T key) with the
Thunderbolt-to-FireWire adapter already plugged in; otherwise, the Apple
firmware will not use the FireWire adapter for the target device.

The following example shows dmesg output of an Apple notebook in
TDM that is connected to a Linux machine using a Thunderbolt to FireWire
adapter (Thunderbolt on the Apple; FireWire on the Linux machine):

[ 542.964313] scsi host10: SBP-2 IEEE-1394

[ 542.964404] firewire_core 0000:0e:00.0: created device fw1: GUID

000a27020064d0ef, S800

[ 543.163093] firewire_sbp2 fw1.0: logged in to LUN 0000 (0 retries)

[ 543.163779] scsi 10:0:0:0: Direct-Access-RBC AAPL FireWire Target 0000

PQ: 0 ANSI: 3

[ 543.164226] sd 10:0:0:0: Attached scsi generic sg10 type 14

[ 543.165006] sd 10:0:0:0: [sdj] 236978176 512-byte logical blocks:

(121 GB/113 GiB)

[ 543.165267] sd 10:0:0:0: [sdj] Write Protect is off

[ 543.165271] sd 10:0:0:0: [sdj] Mode Sense: 10 00 00 00

[ 543.165759] sd 10:0:0:0: [sdj] Write cache: enabled, read cache: enabled,

doesn't support DPO or FUA
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[ 543.171533] sdj: sdj1 sdj2 sdj3

[ 543.173479] sd 10:0:0:0: [sdj] Attached SCSI disk

PC-based Linux systems with Thunderbolt ports are not common, and
Linux kernel support is still under development. As an alternative, you
can boot recent Apple computers with a forensic boot CD/USB device and
acquire them to a locally attached evidence drive.

NVME SSDs
NVME drives compete with SATA Express in the way they attach directly to a
PCI Express bus. As of this writing, hardware write blockers for NVME drives
are very new. There are hot-pluggable USB bridges for NVME and SATA
Express drives from Tableau (Guidance Software). For illustration purposes,
the examples shown here use an NVME device directly attached to a Linux
system.

You can use the nvme tool from the nvme-cli software package to list the
attached NVME devices:

# nvme list

Node Model Version Namepace Usage ...

---------------- -------------------- -------- -------- --------------------------

/dev/nvme0n1 INTEL SSDPE2MW400G4 1.0 1 400.09 GB / 400.09 GB ...

/dev/nvme1n1 Samsung SSD 950 PRO 1.1 1 3.01 GB / 256.06 GB ...

...

You should also check each NVME drive for multiple namespaces by
using the nvme tool. In this example, only a single namespace exists:

# nvme list-ns /dev/nvme1

[ 0]:0x1

Multiple namespaces may need to be acquired individually. This is a
fundamental difference from other drives where a single drive is viewed as
a linear set of sectors, which you can acquire in a single pass. NVME drives
with multiple namespaces will likely need special consideration.8

It’s important to note that the NVME standard was created from scratch
without backward compatibility with SCSI or ATA standards (AHCI, and so
on). It has its own command set and operates independently from other
disk systems. For this reason, some tools may not work as expected with
NVME hardware. Any forensic tool operating directly on low-level device
drivers, such as SATA or SAS, will not work with NVME. However, if foren-
sic tools operate on the virtual block layer, they should continue to work
normally. In addition, PCI forensic write blockers may act as a bridge and

8. At the time of this writing, I did not have testing access to any NVME drives with sup-
port for multiple namespaces. These conclusions are based on reading the standards and
documentation.
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make the device appear as a SCSI device. For example, here the Sleuth Kit
mmls tool is used on an NVME drive attached to the examination host:

# mmls /dev/nvme1n1

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000002047 0000002048 Unallocated

02: 00:00 0000002048 0167774207 0167772160 Linux (0x83)

03: 00:01 0167774208 0335546367 0167772160 Linux (0x83)

04: 00:02 0335546368 0500118191 0164571824 Linux (0x83)

Notice that the device is nvme1n1 and not simply nvme1. The namespace of
the drive must be specified when you’re using commands on NVME drives.

As with other drives, NVME drives have a SMART log, but you can’t
access it with current versions of smartctl (as of this writing). However, you
can use the nvme tool to extract the SMART log as follows:

# nvme smart-log /dev/nvme1

Smart Log for NVME device:/dev/nvme1 namespace-id:ffffffff

critical_warning : 0

temperature : 46 C

available_spare : 100%

available_spare_threshold : 10%

percentage_used : 0%

data_units_read : 2,616

data_units_written : 5,874

host_read_commands : 19,206

host_write_commands : 56,145

controller_busy_time : 0

power_cycles : 34

power_on_hours : 52

unsafe_shutdowns : 17

media_errors : 0

num_err_log_entries : 7

The nvme tool has a number of features for querying attached NVME
drives. See the nvme(1) manual page or visit https://github.com/linux-nvme/
for more information.

As of this writing, NVME drives are an emerging technology. Because
they have numerous benefits in terms of performance and efficiency, they
may become more popular in the future.
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Other Devices with Block or Character Access
You can image any device that is detected as a block device by the Linux
kernel. Some devices will appear as a block device the moment they are
attached to the host system. For example, many generic MP3/music players,
cameras, and other mobile devices behave in this manner.

Some devices need to be switched into a different “disk” mode before
they can become accessible as a block device. Often, you can select this
mode from the device’s user interface.

Some USB devices are multifunctional and may provide other USB
modes in addition to storage. You might need to switch the mode on
these devices to usb-storage before acquiring them. A Linux tool called
usb_modeswitch is able to query some multifunction USB devices and
switch modes.

Closing Thoughts
In this chapter, you learned to attach a subject drive to an acquisition
machine and positively identify the device for imaging. You learned dif-
ferent aspects of PC hardware (USB, PCI, block devices, and so on), how
to query your acquisition system, and how to query your drive for firmware
and SMART information. I demonstrated the removal of the HPA and DCO
as well as various types of security built into the hardware of some drives.
You are now equipped with the knowledge necessary to perform a forensic
acquisition, which will be the focus of Chapter 6.
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6
FORENSIC IMAGE ACQUISITION

This chapter explains the forensic imag-
ing of storage media, with an emphasis on

performing forensically sound image acqui-
sition. This means maximizing the amount

of data extracted from a particular storage medium,
minimizing the disturbance to the storage device and
medium, preserving the collected evidence, and docu-
menting the process (including errors).

You’ll read about several tools and approaches here, as well as the
strengths and weaknesses of each. As a result, you’ll be able to make an
informed decision about which tool is most appropriate in a particular
situation. You’ll learn how to use a variety of free or open source forensic
imaging tools, such as dd, dcfldd, dc3dd, ewfacquire, and ftkimager-cli. In
addition, I describe the sfsimage tool as a script that uses existing acquisition
tools to create a SquashFS forensic evidence container.

How do you choose which tool to use when imaging a disk? To some
extent, it’s a matter of personal preference. You may know one tool bet-
ter than another or trust one particular tool based on past experience (or
distrust a tool based on past experience). Each tool has its strengths and
unique features. Forensic labs that use EnCase or FTK extensively might
choose ewfacquire or ftkimager-cli for compatibility and policy reasons.



Dcfldd and dc3dd are based on mature and well-tested software, and they
were designed to forensically acquire raw images with extensive hashing
and logging. For disks with many bad blocks, GNU ddrescue might be a
good choice. For integrated hashing, encryption, and compression during
acquisition, recent versions of dd_rescue might be an interesting alternative.
Ultimately, the tool used will depend on the forensic lab’s organizational
policy, the type of examination, your personal preferences, and other cir-
cumstances. No particular tool is recommended in this book.

All the examples in this chapter make the following assumptions:

• The subject storage device is physically attached to the forensics exam-
iner’s acquisition workstation.

• The subject storage device has been positively identified.

• The appropriate write-blocking mitigation is in place to prevent modifi-
cation of the subject drive.

• Disk capacity planning has been performed to ensure disk space is not
an issue.

Acquire an Image with dd Tools
The resulting image file from dd-based tools is not a “format” in the same
sense as other forensic formats, such as EnCase EWF or FTK SMART. Images
created by dd-based tools don’t have a header, a footer, internal markers, or
descriptive metadata about a case or incident. They are simply a raw mirror
image of a chunk of data, in this case, a mirror image of a subject disk or
other mass storage.

NOTE Warning: the dd tools are unforgiving if you make any mistakes and will irrevocably
overwrite any unprotected disk if instructed.

To reduce the risk of damaging evidence or an examiner workstation,
always double-check the following:

• A write blocker is protecting the evidence/subject drive.

• The serial number of the input device (if=) matches the serial number
on the physical subject disk label.

• Confirm the output file (of=) is a regular file located on the examiner
system or a program that can handle the expected input to stdin.

Standard Unix dd and GNU dd
The command syntax for dd simply specifies an input file and an output file,
and it may include other options that modify the command’s behavior. The
following example shows the use of dd to copy a disk block device to a file:

# dd if=/dev/sde of=image.raw

15466496+0 records in
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15466496+0 records out

7918845952 bytes (7.9 GB) copied, 130.952 s, 60.5 MB/s

Here if= specifies the input file, which in this case is a raw disk device
attached to the acquisition system. The of= parameter is the output file,
which is a normal file that contains the raw data copied from the disk device.
On completion, dd reports how many bytes were transferred. You can divide
the number of bytes transferred by the sector size, and the result should
exactly match the number of sectors identified when you attached the
device.

There can be challenges when using dd to forensically image a disk.
If read errors occur in the middle of an acquisition, dd will abort with an
“Input/output error.” Address this issue by adding conv=noerror, which will
force dd to skip over the unreadable block and continue. The problem
with skipping over unreadable blocks is that the sector offset on the des-
tination file changes for filesystem blocks on the rest of the disk, causing
the rest of the filesystem on the disk to appear corrupted. To illustrate,
consider the pages of a book. Suppose page 99 is ripped out. If the table
of contents points to a chapter starting at page 200, it’s still possible to find
it. The book’s page numbers are intact, even with the missing page. But this
is not the case when sector 99 is ripped out of a disk image (due to a read
error). The rest of the sectors are renumbered, and the filesystem’s “table of
contents” will point to the wrong blocks after sector 99.

The sync parameter corrects this by padding the unreadable output
block with zeros, essentially creating a “fake” sector or block (full of zeros)
to represent the missing one. The rest of the disk image will then have the
correct sector numbers (offsets) expected by the filesystem it contains.

Using the previous example, but this time with protection from unread-
able blocks (skipping and padding them with zeros), gives this result:

# dd if=/dev/sde of=image.raw conv=noerror,sync

15466496+0 records in

15466496+0 records out

7918845952 bytes (7.9 GB) copied, 136.702 s, 57.9 MB/s

Padding the output impacts the forensic acquisition in that the image is
modified and new data (the zeros) has been added. Cryptographic check-
sums of the disk will not match the original data on the disk (especially if
there are new or changing unreadable areas of a disk). This problem can be
managed by logging hash windows. This is discussed in “Hash Windows” on
page 152.

Another issue with dd is that the transfer block size can be larger than
the physical media sector size. This is problematic when a read error occurs,
because the remaining sectors in the larger block are padded with zeros, not
just the one unreadable sector. This means some normal readable sectors
might be excluded from the forensic image. A block size larger than the
sector size could also cause additional padding sectors to be added to the
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end of a forensic image (if the image size is not divisible by the block size).
The potential performance gained from increasing the block size must be
weighed against the risk of losing evidence from a large padded block.

Traditional dd has no capability for hashing, logging to a file, or other
features you would expect of a forensic acquisition tool. Because the raw
image contains no metadata about the original subject disk, you must sepa-
rately document any information that describes the disk (or partially embed
some information in the filename).

The dcfldd and dc3dd Tools
Two popular dd derivatives, dcfldd and dc3dd, were independently devel-
oped specifically for use in a forensic context.

Because dcfldd and dc3dd originate from GNU dd, they use a similar
command syntax. Neither tool has built-in support for writing to forensic
formats (FTK, EnCase, AFF), compression, or image encryption. But you
can achieve these functions through the use of command piping, which I’ll
demonstrate in subsequent sections.

The following example uses dcfldd to image a disk, ensuring blocks con-
taining unreadable sectors are padded and don’t cause an abort:

# dcfldd if=/dev/sde of=image.raw conv=noerror,sync errlog=error.log

241664 blocks (7552Mb) written.

241664+0 records in

241664+0 records out

Errors are written to a separate error log file. The dcfldd tool does not
use conv=noerror,sync by default; you must add it manually.

A similar imaging command for dc3dd is shown in the next example.
By default, dc3dd does a good job of managing errors during acquisition.
No conv=noerror,sync flag is needed because it’s built in. The output is well
documented, both to stdout and to the log file. Here is a simple example
acquisition:

# dc3dd if=/dev/sde of=image.raw log=error.log

dc3dd 7.2.641 started at 2016-05-07 14:37:10 +0200

compiled options:

command line: dc3dd if=/dev/sde of=image.raw log=error.log

device size: 15466496 sectors (probed), 7,918,845,952 bytes

sector size: 512 bytes (probed)

7918845952 bytes ( 7.4 G ) copied ( 100% ), 80 s, 95 M/s

input results for device `/dev/sde':

15466496 sectors in

0 bad sectors replaced by zeros
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output results for file `image.raw':

15466496 sectors out

dc3dd completed at 2016-05-07 14:38:30 +0200

You can also configure the sfsimage script to use either dcfldd or dc3dd
for imaging into a SquashFS forensic container. In the following example, a
4K native (4096-byte native sector size) drive is imaged using sfsimage:

# sfsimage -i /dev/sdd 4Knative.sfs

Started: 2016-05-07T17:16:54

Sfsimage version: Sfsimage Version 0.8

Sfsimage command: /usr/bin/sfsimage -i /dev/sdd

Current working directory: /exam

Forensic evidence source: if=/dev/sdd

Destination squashfs container: 4Knative.sfs

Image filename inside container: image.raw

Aquisition command: sudo dc3dd if=/dev/sdd log=errorlog.txt hlog=hashlog.txt

hash=md5 2>/dev/null | pv -s 3000592982016

2.73TiB 5:29:31 [ 144MiB/s] [==========================================>] 100%

Completed: 2016-05-07T22:47:42

# cat /sys/block/sdd/queue/logical_block_size

4096

# cat /sys/block/sdd/queue/physical_block_size

4096

This example also illustrates that the physical and logical sector size of a
drive does not impact the acquisition when using dd-style imaging tools.

Both dcfldd and dc3dd have additional features for cryptographic hash-
ing, image splitting, and piping to external programs. I’ll demonstrate these
features in various situations throughout the rest of the book.

Acquire an Image with Forensic Formats
Several imaging formats were specifically designed with forensics in mind.
Some of these, FTK and EnCase for example, are commercial proprietary
formats and have been reverse engineered to allow development of open
source–compatible tools. The next two sections describe tools for acquisition
using these proprietary formats.

The ewfacquire Tool
An acquisition tool that specializes in Guidance EnCase Expert Witness for-
mats is ewfacquire from libewf (https://github.com/libyal/ libewf/). This tool
accepts informational parameters on the command line or asks for them
interactively. You can choose from a number of commercial formats, includ-
ing the various EnCase formats as well as FTK. The ewfacquire tool creates
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acquisition files that enable interoperability with EnCase, FTK, and Sleuth
Kit. The tool can also convert raw images into other formats.

This example shows ewfacquire acquiring an attached disk device (a
MacBook Air connected to the examiner workstation in Target Disk Mode
with a Thunderbolt-to-FireWire adapter):

# ewfacquire -c best -t /exam/macbookair /dev/sdf

ewfacquire 20160424

Device information:

Bus type: FireWire (IEEE1394)

Vendor:

Model:

Serial:

Storage media information:

Type: Device

Media type: Fixed

Media size: 121 GB (121332826112 bytes)

Bytes per sector: 512

Acquiry parameters required, please provide the necessary input

Case number: 42

Description: The case of the missing vase

Evidence number: 1

Examiner name: holmes

Notes: The vase was blue.

Media type (fixed, removable, optical, memory) [fixed]:

Media characteristics (logical, physical) [physical]:

Use EWF file format (ewf, smart, ftk, encase1, encase2, encase3, encase4, encase5,

encase6, encase7, encase7-v2, linen5, linen6, linen7, ewfx) [encase6]:

Start to acquire at offset (0 <= value <= 121332826112) [0]:

The number of bytes to acquire (0 <= value <= 121332826112) [121332826112]:

Evidence segment file size in bytes (1.0 MiB <= value <= 7.9 EiB) [1.4 GiB]:

The number of bytes per sector (1 <= value <= 4294967295) [512]:

The number of sectors to read at once (16, 32, 64, 128, 256, 512, 1024, 2048, 4096,

8192, 16384, 32768) [64]:

The number of sectors to be used as error granularity (1 <= value <= 64) [64]:

The number of retries when a read error occurs (0 <= value <= 255) [2]:

Wipe sectors on read error (mimic EnCase like behavior) (yes, no) [no]:

The following acquiry parameters were provided:

Image path and filename: /exam/macbookair.E01

Case number: 42

Description: The case of the missing vase

Evidence number: 1

Examiner name: holmes

Notes: The vase was blue.
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Media type: fixed disk

Is physical: yes

EWF file format: EnCase 6 (.E01)

Compression method: deflate

Compression level: best

Acquiry start offset: 0

Number of bytes to acquire: 113 GiB (121332826112 bytes)

Evidence segment file size: 1.4 GiB (1572864000 bytes)

Bytes per sector: 512

Block size: 64 sectors

Error granularity: 64 sectors

Retries on read error: 2

Zero sectors on read error: no

Continue acquiry with these values (yes, no) [yes]:

Acquiry started at: May 07, 2016 14:54:52

This could take a while.

Status: at 0.0%

acquired 60 MiB (62914560 bytes) of total 113 GiB (121332826112 bytes)

completion in 2 hour(s), 8 minute(s) and 38 second(s) with 14 MiB/s

(15712616 bytes/second)

...

Status: at 99.9%

acquired 112 GiB (121329188864 bytes) of total 113 GiB (121332826112 bytes)

completion in 0 second(s) with 51 MiB/s (54069886 bytes/second)

Acquiry completed at: May 07, 2016 15:32:16

Written: 113 GiB (121332826300 bytes) in 37 minute(s) and 24 second(s) with

51 MiB/s (54069886 bytes/second)

MD5 hash calculated over data: 083e2131d0a59a9e3b59d48dbc451591

ewfacquire: SUCCESS

The ewfacquire acquisition completed successfully in 37 minutes, and
the 120GB file was split into 54 compressed *.E0 files totaling 79GB.

AccessData ftkimager
AccessData provides free, precompiled, command line versions of the
FTK Imager. The tool is called ftkimager and binaries (no source code)
are available for Debian Linux, Fedora Linux, OS X, and Windows, which
you can download from the AccessData website at http://accessdata.com/
product-download/digital-forensics/ .

The ftkimager tool can take input from a raw device, a file, or stdin. It
outputs to an FTK SMART format, an EnCase EWF format, or stdout. The
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stdin and stdout streams are especially useful for piping to and from other
programs. A number of other features are supported, including the addition
of case metadata into the saved formats, compression, output file splitting
(“image fragments”), hashing, and encrypted images.

The following basic example shows the use of ftkimager to acquire an
attached disk:

# ftkimager /dev/sdf --s01 --description "SN4C53000120 Ultra Fit" sandisk

AccessData FTK Imager v3.1.1 CLI (Aug 24 2012)

Copyright 2006-2012 AccessData Corp., 384 South 400 West, Lindon, UT 84042

All rights reserved.

Creating image...

Image creation complete.

In this example, the source device was a SanDisk thumb drive acces-
sible via /dev/sdf, and the destination filename was sandisk. Because the
default format is raw, adding the --s01 flag saves it to FTK’s SMART for-
mat. A serial number and model string was added to the metadata using
the --description flag.

The ftkimager creates a log file with basic metadata and any additional
information that was added using flags on the command line, as shown here:

# cat sandisk.s01.txt

Case Information:

Acquired using: ADI3

Case Number:

Evidence Number:

Unique description: SN4C53000120 Ultra Fit

Examiner:

Notes:

--------------------------------------------------------------

Information for sandisk:

Physical Evidentiary Item (Source) Information:

[Device Info]

Source Type: Physical

[Drive Geometry]

Cylinders: 14832

Heads: 64

Sectors per Track: 32

Bytes per Sector: 512

Sector Count: 30375936

Source data size: 14832 MB

Sector count: 30375936

[Computed Hashes]
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MD5 checksum: a2a9a891eed92edbf47ffba9f4fad402

SHA1 checksum: 2e73cc2a2c21c9d4198e93db04303f9b38e0aefe

Image Information:

Acquisition started: Sat May 7 15:49:07 2016

Acquisition finished: Sat May 7 15:53:07 2016

Segment list:

sandisk.s01

sandisk.s02

You can extract this same information using the --print-info flag
together with the filename.

SquashFS Forensic Evidence Container
The sfsimage tool is simply a shell wrapper script that you can configure to
use any imaging tool that supports writing an image cleanly to stdout. The
script takes this stream of imaged bytes and places them inside a SquashFS
compressed filesystem.

In this example, sfsimage was configured to use dc3dd as the imaging
tool by editing the DD variable in the beginning of the shell script:

DD="dc3dd if=$DDIN log=errorlog.txt hlog=hashlog.txt hash=md5"

Then the block device is imaged using the -i flag:

$ sfsimage -i /dev/sde philips-usb-drive.sfs

Started: 2016-05-07T15:40:03

Sfsimage version: Sfsimage Version 0.8

Sfsimage command: /usr/bin/sfsimage -i /dev/sde

Current working directory: /exam

Forensic evidence source: if=/dev/sde

Destination squashfs container: philips-usb-drive.sfs

Image filename inside container: image.raw

Aquisition command: sudo dc3dd if=/dev/sde log=errorlog.txt hlog=hashlog.txt

hash=md5 2>/dev/null | pv -s 7918845952

7.38GiB 0:01:18 [95.7MiB/s] [=====================================>] 100%

Completed: 2016-05-07T15:41:22

The following output shows the size of the compressed *.sfs file:

$ ls -lh *.sfs

-rw-r----- 1 holmes holmes 4.5G May 7 15:41 philips-usb-drive.sfs

You can list the contents of the SquashFS container file using sfsimage -l

or mount it (read-only) using sfsimage -m. During the acquisition process,
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sfsimage saves the error log, hash log, and its own log together with the
raw image file. You can add additional files to the sfsimage container using
sfsimage -a.

Acquire an Image to Multiple Destinations
The flexibility of the Unix piping mechanism allows the completion of mul-
tiple complex tasks in a single unattended step. Both dc3dd and dcfldd can
specify multiple destination filenames, allowing you to make simultaneous
image copies. The following example shows imaging a disk and simultane-
ously writing to multiple destination drives: a local copy on the acquisition
host and a second copy on a mounted, external third-party drive. These two
output files are specified using multiple of= flags as follows:

# dc3dd if=/dev/sde of=/exam/local-lab.raw of=/ext/third-party.raw

dc3dd 7.2.641 started at 2016-05-07 15:56:10 +0200

compiled options:

command line: dc3dd if=/dev/sde of=/exam/local-lab.raw of=/ext/third-party.raw

device size: 15466496 sectors (probed), 7,918,845,952 bytes

sector size: 512 bytes (probed)

7918845952 bytes ( 7.4 G ) copied ( 100% ), 79 s, 95 M/s

input results for device `/dev/sde':

15466496 sectors in

0 bad sectors replaced by zeros

output results for file `/exam/local-lab.raw':

15466496 sectors out

output results for file `/ext/third-party.raw':

15466496 sectors out

dc3dd completed at 2016-05-07 15:57:30 +0200

This technique is useful if you’re creating one image for analysis and
another for backup, when you’re creating an additional image for a third
party, or for any other situation where multiple copies of the image are
needed. The two images should be identical, and you can verify them by
comparing cryptographic checksums.

Preserve Digital Evidence with Cryptography
Preserving the integrity of evidence is fundamental to the digital forensics
process. Integrity can be maintained by using cryptographic hashes and
further enhanced with cryptographic signatures by the technicians who
performed the acquisition. The purpose of hashing or signing images is to
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verify that the image has not changed since it was acquired. Because court
proceedings and the presentation of evidence can take months or even
years, it’s useful to confirm that evidence has not been modified during
that time. This can be viewed as somewhat of a digital chain of custody.

The next few sections demonstrate the use of hash windows, signing
with PGP and S/MIME, and RFC-3161 timestamping to preserve digital
evidence. Let’s begin with some examples of basic cryptographic hashing.

Basic Cryptographic Hashing
The cryptographic hashing of forensic images is typically included as part
of the imaging process. The entire media image (each sector in sequence)
is passed through a one-way hash function. As of this writing, the four pri-
mary forensic imaging tools discussed in this book support the cryptographic
hashing algorithms shown in Table 6-1.

Table 6-1: Supported Cryptographic Hashing Algorithms

Tool Hashing algorithms supported

dcfldd MD5, SHA1, SHA256, SHA384, SHA512
dc3dd MD5, SHA1, SHA256, SHA512
ewfacquire MD5, SHA1, SHA256
ftkimager MD5, SHA1

The tools using forensic formats usually produce a hash by default. Both
ftkimager and ewfacquire automatically generate hashes during the acquisi-
tion process, which you saw in previous examples.

To create a hash (or multiple hashes) with dcfldd, you specify the
desired hash algorithms on the command line, as follows:

# dcfldd if=/dev/sde of=image.raw conv=noerror,sync hash=md5,sha256

241664 blocks (7552Mb) written.Total (md5): ebda11ffb776f183325cf1d8941109f8

Total (sha256): 792996cb7f54cbfd91b5ea9d817546f001f5f8ac05f2d9140fc0778fa60980a2

241664+0 records in

241664+0 records out

With dc3dd, you specify hash algorithms using hash= multiple times, as
shown here:

# dc3dd if=/dev/sde of=image.raw hash=md5 hash=sha1 hash=sha512

dc3dd 7.2.641 started at 2016-05-07 16:02:56 +0200

compiled options:

command line: dc3dd if=/dev/sde of=image.raw hash=md5 hash=sha1 hash=sha512

device size: 15466496 sectors (probed), 7,918,845,952 bytes

sector size: 512 bytes (probed)

7918845952 bytes ( 7.4 G ) copied ( 100% ), 80 s, 94 M/s
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input results for device `/dev/sde':

15466496 sectors in

0 bad sectors replaced by zeros

ebda11ffb776f183325cf1d8941109f8 (md5)

62e5045fbf6a07fa77c48f82eddb59dfaf7d4d81 (sha1)

f0d1132bf569b68d900433aa52bfc08da10a4c45f6b89847f244834ef20bb04f8c35dd625a31c2e3

a29724e18d9abbf924b16d8f608f0ff0944dcb35e7387b8d (sha512)

output results for file `image.raw':

15466496 sectors out

dc3dd completed at 2016-05-07 16:04:17 +0200

The traditional dd command doesn’t support hashing. Instead, you must
pipe the image into a separate program during the acquisition process,
which you can do by using the Unix tee command:

# dd if=/dev/sde | tee image.raw | md5sum

15466496+0 records in

15466496+0 records out

7918845952 bytes (7.9 GB, 7.4 GiB) copied, 108.822 s, 72.8 MB/s

ebda11ffb776f183325cf1d8941109f8 -

When dd has no of= specified, the data is sent to stdout where it can
be redirected or piped into another program. In this example, it’s piped
into the Unix tee command, which simultaneously saves the data to a file
and sends it to stdout. Then it’s piped into an independent hashing tool,
md5sum, where it produces the hash. In addition to md5sum, the Linux
coreutils software package includes other hashing programs: sha1sum,
sha224sum, sha256sum, sha384sum, and sha512sum.

I explain the process of verifying the hashes produced in “Verify the
Integrity of a Forensic Image” on page 197.

Hash Windows
When you image an older or damaged disk, block read errors can occur.
These errors can happen in random places during the acquisition, and the
frequency can increase over time. This creates a challenge when you’re pre-
serving the integrity of evidence, because the cryptographic hash might be
different each time the disk is read (reacquired, duplicated, verified, and
so on).

The solution to this problem is to use hash windows, or piecewise hash-
ing. A hash window is a separate cryptographic hash taken over a smaller
sequence of sectors on a disk. For example, a hash window size of 10MB
during acquisition will generate a separate hash for every 10MB sequence
of sectors and generate a list of hashes for a disk. If one sector becomes
unreadable (or is modified for some reason), the hash of that window will
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be invalid. But all the other hash windows on the disk will maintain their
integrity. So even if the hash of the full disk is invalid, if a hash window
matches, the integrity of the data found within it will be preserved.

Among the commercial forensic formats, early versions of the Expert
Witness Format (EWF) only use cyclic redundancy check (CRC) checksums
for individual blocks of data. More recent versions are not open formats,
and the ftkimager has no options for creating or viewing hash windows.

To create hash windows with dcfldd, you need to add the hashwindow=

parameter to specify the window size. You can save the list of hash windows
to a file during acquisition using the hashlog= parameter with a filename.
The following example specifies a hash window size of 1MB, and the hashes
for each sector range are logged to stdout:

# dcfldd if=/dev/sde of=image.raw conv=noerror,sync hashwindow=1M

0 - 1048576: e0796359399e85ecc03b9ca2fae7b9cf

1048576 - 2097152: 5f44a2407d244c24e261b00de65949d7

2097152 - 3145728: d6d8c4ae64b464dc77658730aec34a01

3145728 - 4194304: 0eae942f041ea38d560e26dc3cbfac48

4194304 - 5242880: 382897281f396b70e76b79dd042cfa7f

5242880 - 6291456: 17664a919d533a91df8d26dfb3d84fb9

6291456 - 7340032: ce29d3ca2c459c311eb8c9d08391a446

7340032 - 8388608: cd0ac7cbbd58f768cd949b082de18d55

256 blocks (8Mb) written.8388608 - 9437184: 31ca089fce536aea91d957e070b189d8

9437184 - 10485760: 48586d6dde4c630ebb168b0276bec0e3

10485760 - 11534336: 0969f7533736e7a2ee480d0ca8d9fad1

...

Groups of identical disk sectors will have the same hash value. This
often occurs when large portions of a disk are zeroes or a repeating pattern.

With dc3dd, hash windows are referred to as piecewise hashing, and
hashes can be created, not by sector range but per split file. In the follow-
ing example, the hashes for the sector ranges in each split file are logged:

# dc3dd if=/dev/sda hof=image.raw ofs=image.000 ofsz=1G hlog=hash.log hash=md5

dc3dd 7.2.641 started at 2016-05-07 17:10:31 +0200

compiled options:

command line: dc3dd if=/dev/sda hof=image.raw ofs=image.000 ofsz=1G hlog=hash.log

hash=md5

device size: 15466496 sectors (probed), 7,918,845,952 bytes

sector size: 512 bytes (probed)

7918845952 bytes ( 7.4 G ) copied ( 100% ), 114 s, 66 M/s

7918845952 bytes ( 7.4 G ) hashed ( 100% ), 24 s, 314 M/s

input results for device `/dev/sda':

15466496 sectors in

0 bad sectors replaced by zeros

5dfe68597f8ad9f20600a453101f2c57 (md5)
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c250163554581d94958018d8cca61db6, sectors 0 - 2097151

cd573cfaace07e7949bc0c46028904ff, sectors 2097152 - 4194303

83d63636749194bcc7152d9d1f4b9df1, sectors 4194304 - 6291455

da961f072998b8897c4fbed4c0f74e0e, sectors 6291456 - 8388607

4cd5560038faee09da94a0c829f07f7a, sectors 8388608 - 10485759

516ba0bdf8d969fd7e86cd005c992600, sectors 10485760 - 12582911

c19f8c710088b785c3f2ad2fb636cfcd, sectors 12582912 - 14680063

fb2eb5b178839878c1778453805b8bf6, sectors 14680064 - 15466495

output results for file `image.raw':

15466496 sectors out

[ok] 5dfe68597f8ad9f20600a453101f2c57 (md5)

output results for files `image.000':

15466496 sectors out

dc3dd completed at 2016-05-07 17:12:25 +0200

If there is only one image file (that is, not split), there are no sepa-
rate hash windows, just a single hash for the entire image. In the previous
example, eight image files were created, and the MD5 hashes of each file
match those reported during acquisition. This can be easily confirmed with
md5sum as follows:

# md5sum image.*
c250163554581d94958018d8cca61db6 image.000

cd573cfaace07e7949bc0c46028904ff image.001

83d63636749194bcc7152d9d1f4b9df1 image.002

da961f072998b8897c4fbed4c0f74e0e image.003

4cd5560038faee09da94a0c829f07f7a image.004

516ba0bdf8d969fd7e86cd005c992600 image.005

c19f8c710088b785c3f2ad2fb636cfcd image.006

fb2eb5b178839878c1778453805b8bf6 image.007

Sign an Image with PGP or S/MIME
The hash value is useful to preserve the integrity of an image over time, but
anyone can take a cryptographic hash of an image at any time. Consider
a disk modified by an unauthorized person who creates a new hash for the
disk image. Unless the original hash was properly secured at the original
time of acquisition, it’s difficult to prove which hash (the old or the new) is
the correct one. Cryptographic signing of forensic images binds a person
(or that person’s key) to the integrity of the image. The forensic examiner,
a superior, or an external neutral party can sign the image at the time of
acquisition.
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This doesn’t mean that you need to pass around multiterabyte images
for people to sign. It’s enough to sign the hash of the drive or the list of
hash windows. The best option is to sign the entire output log containing
the timestamps, bytes acquired, and all resulting cryptographic hashes.

In the same way an authorized individual signs paper forms with a pen,
they can sign digital forms with a digital signature. Unlike pen and paper
signatures, digital signatures are difficult to fake (unless the private key is
stolen). Two popular standards for signing digital information are Pretty
Good Privacy (PGP) and Secure/Multipurpose Internet Mail Extensions (S/MIME).

The most common Linux implementation of the OpenPGP standard
is GnuPG (GPG).1 The three different signing methods include a regular
binary signature, a clear text signature, and a detached signature. Using a
clear text signature is the most beneficial, because it shows the text together
with the signature and can be easily embedded into other documents and
reports.

In the following example, S. Holmes has performed a forensic acquisi-
tion of a disk and signs the log output containing the MD5 hash and other
details:

$ gpg --clearsign hash.log

You need a passphrase to unlock the secret key for

user: "Sherlock Holmes <holmes@digitalforensics.ch>"

2048-bit RSA key, ID CF87856B, created 2016-01-11

Enter passphrase:

The previous command created the hash.log.asc file, which contains the
contents of the file together with the signature:

$ cat hash.log.asc

-----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA1

dc3dd 7.2.641 started at 2016-05-07 17:23:49 +0200

compiled options:

command line: dc3dd if=/dev/sda hof=image.raw ofs=image.000 ofsz=1G hlog=hash.log

hash=md5

input results for device `/dev/sda':

5dfe68597f8ad9f20600a453101f2c57 (md5)

c250163554581d94958018d8cca61db6, sectors 0 - 2097151

cd573cfaace07e7949bc0c46028904ff, sectors 2097152 - 4194303

83d63636749194bcc7152d9d1f4b9df1, sectors 4194304 - 6291455

1. It is assumed the authorized person has installed GnuPG and has securely generated a
key pair.

Forensic Image Acquisition 155



da961f072998b8897c4fbed4c0f74e0e, sectors 6291456 - 8388607

4cd5560038faee09da94a0c829f07f7a, sectors 8388608 - 10485759

516ba0bdf8d969fd7e86cd005c992600, sectors 10485760 - 12582911

c19f8c710088b785c3f2ad2fb636cfcd, sectors 12582912 - 14680063

fb2eb5b178839878c1778453805b8bf6, sectors 14680064 - 15466495

output results for file `image.raw':

[ok] 5dfe68597f8ad9f20600a453101f2c57 (md5)

output results for files `image.000':

dc3dd completed at 2016-05-07 17:25:40 +0200

-----BEGIN PGP SIGNATURE-----

Version: GnuPG v1

iQEcBAEBAgAGBQJXLgnoAAoJEEg0vvzPh4VrdeAH/0EhCLFSWwTZDNUrIn++1rI3

XI6KuwES19EKR18PrK/Nhf5MsF3xyy3c/j7tjopkfnDGLYRA615ycWEvIJlevNh7

k7QHJoPTDnyJcF29uuTINPWk2MsBlkNdTTiyA6ab3U4Qm+DMC4wVKpOp/io52qq3

KP7Kh558aw8m+0Froc0/4sF7rer9xvBThA2cw+ZiyF5a8wTCBmavDchCfWm+NREr

RIncJV45nuHrQW8MObPOK6G34mruT9nSQFH1LR1FL830m/W69WHS2JX+shfk5g5X

I6I7jNEn6FgiRyhm+BizoSl5F6mv3ff6mRlVysGDJ+FXE3CiE6ZzK+jNB7Pw+Zg=

=6GrG

-----END PGP SIGNATURE-----

This signed text can be verified at a later date by any third party using a
copy of Holmes’s GPG public key.

Another encryption standard you can use to sign files is S/MIME. The
use of S/MIME relies on X.509 certificates from a public key infrastructure
(PKI), either privately within an organization or from a public certificate
authority (CA). If an authorized person has a personal certificate (typically,
the same one they use for signing and encrypting S/MIME email), they can
use it to sign files containing acquisition details.

The gpgsm tool is part of GnuPG2 and supports managing X.509 keys,
encryption, and signatures using the S/MIME standard. Once the necessary
keys have been generated and certificates have been installed, you can use
gpgsm to sign files in a similar manner to GPG. The following command
produces a signature of a specified file:

$ gpgsm -a -r holmes@digitalforensics.ch -o hash.log.pem --sign hash.log

The -a flag specifies it should use ASCII armor, a method of encoding
binary data in a plaintext format, instead of binary (because it’s easier to
copy into reports or emails). The -r flag specifies which recipient key to use
for signing. In this command example, the email address is used, but the
key can also be specified by key ID, fingerprint, or matching components of
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X.509 strings. The -o specifies the output file for the signature, and --sign

instructs gpgsm to create a signature over the specified hash.log file.
When used for signing, gpgsm will create a PEM2 signature file that

looks similar to the following:

-----BEGIN SIGNED MESSAGE-----

MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0B

BwGggCSABIICIApkYzNkZCA3LjIuNjQxIHN0YXJ0ZWQgYXQgMjAxNi0wMS0xMSAy

...

GR2YC4Mx5xQ63Kbxg/5BxT7rlC7DBjHOVMCMJzVPy4OVUOXPnL2IdP2dhvkOtojk

UKIjSw40xIIAAAAAAAA=

-----END SIGNED MESSAGE-----

Once a signature has been created by an authorized party, the hash
values and details of the original forensic acquisition cannot be changed.
Only the person who created the signature can make changes and sign it
again.3 With these signatures, it’s possible to verify the integrity of the acqui-
sition details without involving the person who signed it. I describe the sig-
nature verification process in Chapter 7.

You can purchase personal S/MIME certificates similar to SSL cer-
tificates for websites. You’ll find an overview of CAs who offer personal
S/MIME certificates at https://www.sslshopper.com/email-certificates-smime
-certificates.html. Using a personal S/MIME certificate, you can also sign the
acquisition details simply by sending a signed email message containing the
contents of the output log.

The examples shown in this section are simple and use GNU Privacy
Guard tools. There are other command line tools you can use to per-
form cryptographic signing. The OpenSSL command line tool provides a
rich cryptographic toolkit that includes the ability to sign files using X.509
certificates and S/MIME. OpenSSL is used in the next section to demon-
strate cryptographic timestamping.

RFC-3161 Timestamping
Signatures with PGP or S/MIME strongly bind an authorized individual (or
multiple individuals) to the integrity of a file containing forensic acquisition
results. In some cases, it’s also useful to strongly bind the forensic acquisi-
tion results to a specific point in time. You can do this by using an indepen-
dent timestamping service.

Timestamping is a formal standard defined in RFC-3161, which
describes the format of a timestamp request and response. OpenSSL can
create and send timestamp requests and verify responses. In the following

2. PEM was originally defined in the Privacy Enhanced Mail standard, and today it usually refers
to the file format used to store X.509 certificates.
3. Multiple signatures from different people can also be used to reduce the risk of stolen keys or
malicious changes by one person.
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example, an RFC-3161 compliant timestamp request for the acquisition log
is created, producing a request file with a *.tsq extension:

$ openssl ts -query -data hash.log -out hash.log.tsq -cert

This timestamp request contains a hash of the hash.log file, not the
actual file. The file is not sent to the timestamping server. This is important
from an information security perspective. The timestamp service provider is
only trusted with timestamp information, not the contents of the files being
timestamped.

The generated request can then be sent to a timestamping service
using the tsget command included with OpenSSL.4 The following example
uses the FreeTSA service:

$ tsget -h https://freetsa.org/tsr hash.log.tsq

On some Linux distributions, this script might be missing or broken.
You can work around it by manually submitting the timestamp request with
the curl command as follows:

$ curl -s -H "Content-Type: application/timestamp-query" --data-binary

"@hash.log.tsq" https://freetsa.org/tsr > hash.log.tsr

If the timestamping server accepts the request, it returns an RFC-3161
compliant timestamp. In this example, the timestamp is saved with the *.tsr
file extension to hash.log.tsr. You can view the contents of the timestamp
using the OpenSSL ts command:

$ openssl ts -reply -in hash.log.tsr -text

Status info:

Status: Granted.

Status description: unspecified

Failure info: unspecified

TST info:

Version: 1

Policy OID: 1.2.3.4.1

Hash Algorithm: sha1

Message data:

0000 - 63 5a 86 52 01 24 72 43-8e 10 24 bc 24 97 d0 50 cZ.R.$rC..$.$..P

0010 - 4a 69 ad a9 Ji..

Serial number: 0x0AF4

Time stamp: May 7 22:03:49 2016 GMT

Accuracy: 0x01 seconds, 0x01F4 millis, 0x64 micros

Ordering: yes

4. On some systems, this is a Perl script located in /usr/lib/ssl/misc.
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Nonce: 0xBC6F68553A3E5EF5

TSA: DirName:/O=Free TSA/OU=TSA/description=This certificate digitally signs

documents and time stamp requests made using the freetsa.org online

services/CN=www.freetsa.org/emailAddress=busilezas@gmail.com/L=Wuerzburg/

C=DE/ST=Bayern

Extensions:

A copy of the hash.log.tsr file provides proof that the acquisition results
existed at a specific point in time. An independent third party can also verify
the validity of the timestamp. I’ll demonstrate the validation of timestamps
in Chapter 7.

A number of free and commercial timestamping services are available
on the internet. Here are a few examples:

• Comodo RFC-3161 Timestamping Service: http://timestamp.comodoca
.com/?td=sha256

• FreeTSA: http://freetsa.org/index_en.php

• Polish CERTUM PCC - General Certification Authority: http://time
.certum.pl/

• Safe Creative Timestamping Authority (TSA) server: http://tsa.safecreative
.org/

• StartCom Free RFC-3161 Timestamping Service: http://tsa.startssl.com/
rfc3161

• Zeitstempeldienst der DFN-PKI: http://www.pki.dfn.de/zeitstempeldienst/

The examples in the last two sections strongly bind an individual and a
time to the integrity of an image. Cryptographic tokens such as smartcards
or hardware security modules (HSMs) can be used to secure the private keys
and guarantee physical possession of the token to sign the image. Crypto-
graphic keys on hard tokens cannot be copied or stolen. Some examples
of hard tokens that can be used to make cryptographic signatures include
Nitrokey, Yubikey, and GnuPG OpenPGP smartcards.

Manage Drive Failure and Errors
Occasionally, a forensic lab receives a problematic hard disk to analyze. The
disk might be old, damaged, or failing. It may have interface errors, platter
read errors, head errors, motor resets, and other errors. In some cases, you
can still acquire a partial forensic image of the drive. Depending on the disk
size, the block size, and the number of unreadable sectors, imaging a bad
disk could take several days.

It’s important to understand that errors described here refer to the
drive hardware. They don’t refer to software errors such as corrupt file-
systems, destroyed partition tables, and so on.

This section shows examples of different tools and how they handle
error conditions. The dmsetup tool is useful for simulating disk errors and
testing how forensic tools behave under various failing conditions, and was
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used in several of the following examples (the disk device is /dev/mapper/
errdisk). An overview of how dc3dd, dcfldd, ewfacquire, and ftkimager man-
age and report errors is shown in the following section.

Forensic Tool Error Handling
The following example shows the dcfldd tool encountering a disk with two
errors. The locations (block offsets) of the errors on a disk are reported to
stdout and logged to the specified file, as follows:

# dcfldd if=/dev/mapper/errdisk of=errdisk.raw conv=noerror,sync errlog=error.log

...

# cat error.log

dcfldd:/dev/mapper/errdisk: Input/output error

(null)+15 records in

(null)+16 records out

dcfldd:/dev/mapper/errdisk: Input/output error

(null)+29 records in

(null)+32 records out

(null)+62496 records in

(null)+62501 records out

Several bugs were encountered when testing dcfldd under Debian
Linux. The block size used for padding remained at 4K, even when a 512-
byte block size was specified (dd showed the same behavior). On some
errors, dcfldd went into an endless loop and had to be manually terminated.

The dc3dd tool provides a very detailed overview of the errors encoun-
tered. Errors are sent to stout and saved in the specified log file, as follows:

# dc3dd if=/dev/mapper/errdisk of=errdisk.raw log=error.log

...

# cat error.log

dc3dd 7.2.641 started at 2016-01-12 19:42:26 +0100

compiled options:

command line: dc3dd if=/dev/mapper/errdisk of=errdisk.raw log=error.log

device size: 4000000 sectors (probed), 2,048,000,000 bytes

sector size: 512 bytes (probed)

[!!] reading `/dev/mapper/errdisk' at sector 1000 : Input/output error

[!!] 4 occurences while reading `/dev/mapper/errdisk' from sector 2001 to sector 2004

: Input/output error

2048000000 bytes ( 1.9 G ) copied ( 100% ), 5.74919 s, 340 M/s

input results for device `/dev/mapper/errdisk':

4000000 sectors in

5 bad sectors replaced by zeros
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output results for file `errdisk.raw':

4000000 sectors out

dc3dd completed at 2016-01-12 19:42:31 +0100

The ewfacquire tool offers a default error granularity of 64 sectors, and
this can be changed to 1 to reduce the number of sectors padded to zero.
In this example, ewfacquire only detected two read errors (similar to dcfldd;
it skipped and padded a 4k block without checking the other sectors):

# ewfacquire -t errdisk /dev/mapper/errdisk

ewfacquire 20150126

...

The number of bytes per sector (1 <= value <= 4294967295) [512]:

The number of sectors to read at once (16, 32, 64, 128, 256, 512, 1024, 2048, 4096,

8192, 16384, 32768) [64]:

The number of sectors to be used as error granularity (1 <= value <= 64) [64]: 1

The number of retries when a read error occurs (0 <= value <= 255) [2]: 1

Wipe sectors on read error (mimic EnCase like behavior) (yes, no) [no]: yes

...

Acquiry completed at: Jan 12, 2016 19:57:58

Written: 1.9 GiB (2048000804 bytes) in 14 second(s) with 139 MiB/s (146285771

bytes/second).

Errors reading device:

total number: 2

at sector(s): 1000 - 1008 number: 8 (offset: 0x0007d000 of size: 4096)

at sector(s): 2000 - 2008 number: 8 (offset: 0x000fa000 of size: 4096)

MD5 hash calculated over data: 4d319b12088b3990bded7834211308eb

ewfacquire: SUCCESS

The ftkimager reports errors and logs them. The following example uses
an actual physically defective disk (an original first-generation iPod) because
the ftkimager didn’t work with simulated errors created with dmsetup:

# ftkimager /dev/sdg ipod

AccessData FTK Imager v3.1.1 CLI (Aug 24 2012)

Copyright 2006-2012 AccessData Corp., 384 South 400 West, Lindon, UT 84042

All rights reserved.

Creating image...

234.25 / 4775.76 MB (11.71 MB/sec) - 0:06:27 left

Image creation complete.

# cat ipod.001.txt

Case Information:

Acquired using: FTK

...
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ATTENTION:

The following sector(s) on the source drive could not be read:

491584 through 491591

491928 through 491935

The contents of these sectors were replaced with zeros in the image.

...

Each of the forensic acquisition tools had some error detection, han-
dling, and logging capabilities. However, for disks with a significant number
of errors or hardware damage, using more specialized tools might be more
appropriate. The next section describes the use of data recovery tools for
this purpose.

Data Recovery Tools
Several disk block recovery tools are worth mentioning because of their
robust error handling and aggressive recovery methods. Although these
tools were not written with forensics in mind, they are useful in situations
in which other forensic tools have failed.

The ddrescue tool (by Antonio Diaz Diaz) was designed to recover
blocks from damaged disks. Unlike the dd family of tools, it has a multi-
phase recovery algorithm, and you can run it against a disk multiple times
to fill gaps in the image. The algorithm includes reading problematic parts
of the disk backward to increase the number of recovered sectors and per-
forming various retry operations over multiple passes.

A completed ddrescue operation results in statistics that describe the
recovery success rate:

# ddrescue /dev/sda image.raw image.log

rescued: 40968 MB, errsize: 2895 kB, current rate: 0 B/s

ipos: 39026 MB, errors: 38, average rate: 563 kB/s

opos: 39026 MB, run time: 20.18 h, successful read: 8.04 h ago

Finished

The log file that ddrescue produces shows the start and end times and a
detailed overview of the disk’s problem areas:

# Rescue Logfile. Created by GNU ddrescue version 1.19

# Command line: ddrescue /dev/sda image.raw image.log

# Start time: 2015-06-13 22:57:39

# Current time: 2015-06-14 19:09:03

# Finished

# current_pos current_status

0x9162CAC00 +

# pos size status

0x00000000 0x4F29D000 +

0x4F29D000 0x00002000 -
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0x4F29F000 0x00253000 +

...

The dd_rescue tool (note the underscore) was developed by Kurt
Garloff in the late 1990s, and although the name contains dd, the com-
mand syntax is completely different and it doesn’t perform data conversion
(same with ddrescue). But it does transfer blocks of data similar to dd. Sev-
eral features make this tool a possible option for use in a digital forensic
laboratory. The block size is dynamically changed when disk errors occur,
automatically decreasing to a physical block size. After a period without
errors, the block size is changed again to improve performance. You can
also image the disk backwards, from the end of the disk to the beginning.
This technique is useful if the drive has difficulty reading past a certain point
on the disk.

The myrescue tool is designed to initially avoid unreadable areas (no
retries) and focuses on recovering as much of the readable areas as possible.
After the readable sectors are copied, it works on the failed ranges. The
tool documentation recommends letting difficult drives rest for a couple
of hours between retries.

Another tool called recoverdm also performs data recovery. It is unique
in that it can recover data from a damaged disk at the sector level or at an
individual file level. The tool has additional features for floppies and optical
media.

SMART and Kernel Errors
The SMART information on the disk can provide additional indicators
about the health of the drive and the likelihood of a successful recovery.
For example:

# smartctl -x /dev/sda

smartctl 6.4 2014-10-07 r4002 [x86_64-linux-3.19.0-18-generic] (local build)

Copyright (C) 2002-14, Bruce Allen, Christian Franke, www.smartmontools.org

=== START OF INFORMATION SECTION ===

Model Family: Maxtor DiamondMax D540X-4K

Device Model: MAXTOR 4K040H2

Serial Number: 672136472275

Firmware Version: A08.1500

User Capacity: 40,971,571,200 bytes [40.9 GB]

Sector Size: 512 bytes logical/physical

...

Vendor Specific SMART Attributes with Thresholds:

ID# ATTRIBUTE_NAME FLAGS VALUE WORST THRESH FAIL RAW_VALUE

1 Raw_Read_Error_Rate P--R-K 100 253 020 - 0

3 Spin_Up_Time POS--K 087 086 020 - 1678

4 Start_Stop_Count -O--CK 078 078 008 - 14628

5 Reallocated_Sector_Ct PO--CK 003 001 020 NOW 486
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7 Seek_Error_Rate PO-R-- 100 100 023 - 0

9 Power_On_Hours -O--C- 073 073 001 - 17814

10 Spin_Retry_Count -OS--K 100 100 000 - 0

11 Calibration_Retry_Count PO--C- 100 080 020 - 0

12 Power_Cycle_Count -O--CK 100 100 008 - 294

13 Read_Soft_Error_Rate PO-R-- 100 100 023 - 0

194 Temperature_Celsius -O---K 094 083 042 - 17

195 Hardware_ECC_Recovered -O-RC- 100 031 000 - 7137262

196 Reallocated_Event_Count ----C- 100 253 020 - 0

197 Current_Pending_Sector -O--CK 003 001 020 NOW 486

198 Offline_Uncorrectable ----C- 100 253 000 - 0

199 UDMA_CRC_Error_Count -O-RC- 199 199 000 - 1

||||||_ K auto-keep

|||||__ C event count

||||___ R error rate

|||____ S speed/performance

||_____ O updated online

|______ P prefailure warning

Read SMART Log Directory failed: scsi error badly formed scsi parameters

ATA_READ_LOG_EXT (addr=0x00:0x00, page=0, n=1) failed: scsi error aborted command

Read GP Log Directory failed

...

ATA Error Count: 9883 (device log contains only the most recent five errors)

...

Error 9883 occurred at disk power-on lifetime: 17810 hours (742 days + 2 hours)

...

Error 9882 occurred at disk power-on lifetime: 17810 hours (742 days + 2 hours)

...

Error 9881 occurred at disk power-on lifetime: 17810 hours (742 days + 2 hours)

...

When performing forensic acquisition, you should note any error and
failure messages appearing in dmesg or tool output. In cases where sec-
tors could not be read and zeroed padding has been added, this needs to
be recorded (depending on the forensic acquisition tool used, it will be
logged).

Other Options for Failed Drives
In this section, I provide a few additional tips and comments to help you
acquire problematic disks.

In some cases, a disk might only operate correctly for a few minutes
when it’s cold before it becomes inaccessible or unstable. If the disk func-
tions properly for a few minutes before failing, you might still be able to
make an image over time by repeatedly restarting the recovery. Some of the
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tools mentioned in “Data Recovery Tools” on page 162 maintain a file that
contains the recovery state from the last attempt. A recovery operation can
be interrupted and later restarted where it left off.

After attempting to image a drive for a while, let the drive cool down
and try again. Sometimes as a drive overheats, the access problems can
get worse. Again, the disk recovery tools’ restart features are useful in this
situation.

If you suspect the drive electronics are faulty and a second identical
(meaning the same make, model, and firmware revision) functioning drive
is available,5 you might be able to swap the drive electronics temporarily to
recover the data. You don’t need to open the disk to perform this action, so
the risk of damage (due to dust and so on) is minimal.

Professional data recovery firms have cleanrooms where trained staff
can open drives, unstick drive heads, replace actuators, and perform other
delicate operations on a drive. Do not attempt these procedures without the
proper environment, equipment, and training. Just opening a drive outside
of a cleanroom will expose it to dust particles, causing damage to the disk.

Damaged Optical Discs
Most of the tools mentioned earlier should also function on optical media.
Some tools have added features or special behavior for optical media.

The ddrescue tool suggests specifying a 2048-byte sector size for optical
media. Here’s an example of ddrescue in the process of recovering a dam-
aged CD-ROM disc:

# ddrescue -b 2048 /dev/cdrom cdrom.raw

GNU ddrescue 1.19

Press Ctrl-C to interrupt

rescued: 15671 kB, errsize: 3878 kB, current rate: 0 B/s

ipos: 408485 kB, errors: 126, average rate: 12557 B/s

opos: 408485 kB, run time: 20.80 m, successful read: 31 s ago

Copying non-tried blocks... Pass 2 (backwards)

Notice that ddrescue reads the CD-ROM backwards in an attempt to
recover blocks.

For optical discs that are partially recoverable but have a corrupt file-
system, you can use carving tools to extract files. A data carver designed for
optical discs is the dares carver (ftp://ftp.heise.de/pub/ct/ctsi/dares.tgz), which
supports various optical disc filesystem formats.

This section has covered the management of drive failure and errors.
Drive failure and errors do happen and can result in partial or total data
loss. In cases where you experience problems with a drive, be sure you doc-
ument the nature of the error and, wherever possible, the sector that was
impacted.

5. In the data recover industry, this is called a donor drive.
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Image Acquisition over a Network
Imaging a disk over a network can be useful for a number of reasons:

• A disk may be located in a remote location, and it might not be feasible
to physically seize and ship the disk to a central forensic lab (possibly
due to disruption of business, lack of resources, or other logistical
issues).

• A time-critical incident might require a remote drive image as soon
as possible without delays due to shipping (depending on network
bandwidth, disk size, and shipping times, shipping a disk might still be
faster).6

• A machine in a local forensic lab may have a disk in a PC that cannot
be feasibly physically removed. This could be due to the design of the
PC, the lack of tools needed, or the risk of causing damage or destroying
evidence.

In general, seizing disks does not scale well in large organizations, and
having a broadly deployed enterprise solution for remote disk triage and
acquisition is common. EnCase Enterprise is a classic example, with many
newer firms bringing similar products to the market.

As with disk imaging, many possibilities exist to perform forensic acqui-
sition over a network. Most solutions involve booting a forensic CD on a
remote machine, establishing a network connection, and piping the dd
output over the network to a local file. You can do this simply by using a
combination of dd and netcat. Secure connections can also be made using
ssh or secure netcat alternatives, such as socat and cryptcat.

This section provides several examples that use ssh for a secure network
connection. But first, let’s start by looking at rdd, which was specifically
designed with forensic acquisition in mind.

Remote Forensic Imaging with rdd
Designed for acquiring disk images over a network, the rdd tool was devel-
oped by the Netherlands Forensic Institute (NFI). The rdd tool has a num-
ber of useful features, including hashing, logging, compression, error han-
dling, file splitting, progress indicators, and statistics. Support for EWF
output can be included at compile time. The rdd tool uses a client-server
model, where the subject PC (booted from a forensic boot CD) is the client
and the examiner PC is the server. You perform an acquisition by starting a
listening process on the server (examiner PC) and running the acquisition
command on the client.

The rdd tool does not have built-in security; it must be added using
a VPN, a secure shell, or the equivalent. When you are using rdd over
untrusted or hostile networks, the network traffic needs to be encrypted,

6. The quote from Andrew S. Tanenbaum is appropriate here: “Never underestimate the
bandwidth of a station wagon full of tapes hurtling down the highway.”
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and listening TCP ports should not be exposed. You can do this by using a
two-step process of establishing a secure network channel and using it for
the acquisition.

Without security, the rdd tool is still useful on a trusted network seg-
ment in a protected lab setting, when using crossed Ethernet cables, or when
connecting two PCs with a FireWire cable. (FireWire interfaces can be used
as network interfaces.)

On the examiner’s workstation, run the server mode of rdd-copy by
specifying -S, as shown in the following example. This needs to be started
before the client starts. Make sure no firewalls or iptables packet filtering is
blocking TCP port 4832 (the default port).

# rdd-copy -S --md5 -l server.log

# cat server.log

2016-01-13 01:34:21 +0100:

2016-01-13 01:34:21 +0100: 2016-01-13 01:34:21 CET

2016-01-13 01:34:21 +0100: rdd version 3.0.4

...

2016-01-13 01:34:21 +0100: rdd-copy -S --md5 -l server.log

2016-01-13 01:34:21 +0100: ========== Parameter settings ==========

2016-01-13 01:34:21 +0100: mode: server

2016-01-13 01:34:21 +0100: verbose: no

2016-01-13 01:34:21 +0100: quiet: no

2016-01-13 01:34:21 +0100: server port: 4832

2016-01-13 01:34:21 +0100: input file: <none>

2016-01-13 01:34:21 +0100: log file: server.log

...

2016-01-13 01:37:05 +0100: === done ***
2016-01-13 01:37:05 +0100: seconds: 147.787

2016-01-13 01:37:05 +0100: bytes written: 7918845952

2016-01-13 01:37:05 +0100: bytes lost: 0

2016-01-13 01:37:05 +0100: read errors: 0

2016-01-13 01:37:05 +0100: zero-block substitutions: 0

2016-01-13 01:37:05 +0100: MD5: a3fa962816227e35f954bb0b5be893ea

...

On the remote subject PC, run the client mode of rdd-copy using -C.
Specify the input device using -I. The input device can be any locally
attached storage device (it was a remote USB stick in this example). The
output file, -O, has an additional option to indicate a network destination.
The client tells the server which file to use for the acquired image, using the
traditional Unix convention of hostname:/path/to/filename:

# rdd-copy -C --md5 -l client.log -I /dev/sde -O -N lab-pc:/evi/image.raw

# cat client.log

2016-01-13 01:34:37 +0100:

2016-01-13 01:34:37 +0100: 2016-01-13 01:34:37 CET

2016-01-13 01:34:37 +0100: rdd version 3.0.4
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...

2016-01-13 01:34:37 +0100: rdd-copy -C --md5 -l client.log -I /dev/sde -O -N

lab-pc:/evi/image.raw

2016-01-13 01:34:37 +0100: ========== Parameter settings ==========

2016-01-13 01:34:37 +0100: mode: client

2016-01-13 01:34:37 +0100: verbose: no

2016-01-13 01:34:37 +0100: quiet: no

2016-01-13 01:34:37 +0100: server port: 4832

2016-01-13 01:34:37 +0100: input file: /dev/sde

2016-01-13 01:34:37 +0100: log file: client.log

2016-01-13 01:34:37 +0100: output #0

2016-01-13 01:34:37 +0100: output file: /evi/image.raw

2016-01-13 01:34:37 +0100: segment size: 0

2016-01-13 01:34:37 +0100: output as ewf compression: no ewf

2016-01-13 01:34:37 +0100: output host: lab-pc

2016-01-13 01:34:37 +0100: output port: 4832

...

2016-01-13 01:37:05 +0100: === done ***
2016-01-13 01:37:05 +0100: seconds: 147.787

2016-01-13 01:37:05 +0100: bytes written: 7918845952

2016-01-13 01:37:05 +0100: bytes lost: 0

2016-01-13 01:37:05 +0100: read errors: 0

2016-01-13 01:37:05 +0100: zero-block substitutions: 0

2016-01-13 01:37:05 +0100: MD5: a3fa962816227e35f954bb0b5be893ea

...

Both client and server specify log files using -l and a hash algorithm that
can be verified at the end of the transfer. You can monitor the progress of
the client and the server by adding -P 1 to either side (or both).

Secure Remote Imaging with ssh
In situations where rdd is not available, you can perform a basic acquisition
using a single ssh command either on the remote PC containing the subject
drive or on the examiner PC. The following example shows imaging a disk
(a USB stick plugged into the remote PC in this example) over the network
using a secure shell session originating from the remote PC:

# dd if=/dev/sdb | ssh lab-pc "cat > sandisk-02028302BCA1D848.raw"

7856127+0 records in

7856127+0 records out

4022337024 bytes (4.0 GB) copied, 347.411 s, 11.6 MB/s

The dd command is run locally, and the output is piped into the ssh

command. Secure shell will pipe this data stream into the cat program on
the examiner PC. The output from the cat program is redirected into a file
residing on the examiner PC. Upon completion, a raw image will be avail-
able to examine with other forensic tools.
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You could also acquire the image with secure shell originating from the
examiner workstation and connecting to the remote PC with the attached
subject disk. The following example demonstrates this from the examiner
PC, imaging the same USB again:

# ssh remote-pc "dd if=/dev/sdb" > sandisk-02028302BCA1D848.raw

7856127+0 records in

7856127+0 records out

4022337024 bytes (4.0 GB) copied, 343.991 s, 11.7 MB/s

Here secure shell is instructed to run the dd command on the remote
(subject) machine. The output from the remote dd command becomes the
output of the local ssh command and is redirected to a local file. On com-
pletion, a raw image file is available for analysis on the examiner’s PC.

You can replace the basic dd commands shown in this section with
dcfldd, dc3dd, or any of the other acquisition tools that image to stdout.
You can use this method to collect other information about a remote (sub-
ject) machine. To illustrate, here are some examples of collecting data
about a remote PC that has been started with the DEFT Linux boot CD. In
this example, hdparm, smartctl, and lshw data are collected and saved on
the examiner workstation:

# ssh remote-pc "hdparm --dco-identify /dev/sda" > dco.lenovo-W38237SJ.txt

# ssh remote-pc "hdparm -I /dev/sda" > hdparm.lenovo-W38237SJ.txt

# ssh remote-pc "smartctl -x /dev/sda" > smartctl.lenovo-W38237SJ.txt

# ssh remote-pc "lshw" > lshw.lenovo-W38237SJ.txt

As in the previous example, ssh executes various commands on the
remote machine, and the output is redirected to files on the local (exam-
iner) workstation. The serial number of the disk is included in the file-
name to ensure an obvious link between the physical disk and the data files
collected.

Remote Acquisition to a SquashFS Evidence Container
As demonstrated previously, SquashFS can be used as a forensic evidence
container, with sfsimage used to image local disks. The sfsimage script can
also image a disk on a remote machine directly into a SquashFS evidence
container. Two examples are shown here.

The remote dd output can be piped via ssh into a local sfsimage com-
mand, creating a SquashFS forensic evidence container with the raw image:

$ ssh root@remote-pc "dd if=/dev/mmcblk0" | sfsimage -i - remote-pc.sfs

Started: 2016-05-08T10:30:34

Sfsimage version: Sfsimage Version 0.8

Sfsimage command: /usr/bin/sfsimage -i -

Current working directory: /home/holmes

Forensic evidence source:
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Destination squashfs container: remote-pc.sfs

Image filename inside container: image.raw

Aquisition command: sudo dc3dd log=errorlog.txt hlog=hashlog.txt hash=md5

2>/dev/null | pv -s 0

31116288+0 records inMiB/s] [ <=> ]

31116288+0 records out

15931539456 bytes (16 GB, 15 GiB) copied, 597.913 s, 26.6 MB/s

14.8GiB 0:09:58 [25.4MiB/s] [ <=> ]

Completed: 2016-05-08T10:40:32

In this example, the remote PC is accessed by the root user (root@remote-pc),
and a remote media card (/dev/mmcblk0) is imaged to stdout with a dd com-
mand. The stdout stream is transported over the ssh connection to the local
sfsimage command where - (stdin) is the input file.

A second method uses the same principle, but with variables for
the sfsimage shell script. In the sfsimage config() block or in a separate
sfsimage.conf file, you can specify variables and configuration settings that
control sfsimage behavior. Setting the DD variable to an ssh command will
cause mksquashfs to take input from a remote machine via ssh. A config file
in the current working directory is shown here:

$ cat sfsimage.conf

DD="ssh root@remote-pc \"dd if=/dev/mmcblk0\""

SQSUDO=""

The double quotes in the DD variable need to be escaped. The SQSUDO

variable is set to an empty string, because no local root privileges are
needed. When you run sfsimage with this config file in your local working
directory, your configuration settings will override the default sfsimage
settings.

It is important to note, that the input file should still be specified as
a dash (-), because input is piped to stdin internally by the ssh command
in the DD variable. The remote acquisition using sfsimage in this way looks
like this:

$ sfsimage -i - remote-pc.sfs

Started: 2016-05-08T10:56:30

Sfsimage version: Sfsimage Version 0.8

Sfsimage command: /usr/bin/sfsimage -i -

Current working directory: /home/holmes

Forensic evidence source:

Destination squashfs container: remote-pc.sfs

Image filename inside container: image.raw

Aquisition command: ssh root@remote-pc "dd if=/dev/mmcblk0" 2>/dev/null | pv -s 0

14.8GiB 0:09:03 [ 28MiB/s] [ <=> ]

Completed: 2016-05-08T11:05:33

170 Chapter 6



I showed this DD configuration example primarily to illustrate the possi-
bility of embedding remote network-imaging commands into sfsimage. The
embedding of complex acquisition commands into config files can generally
be used to change the operation of the sfsimage script.

Acquire a Remote Disk to EnCase or FTK Format
You can also pipe remote ssh commands into other programs to perform
tasks or conversions to other formats. A useful example is to remotely
acquire a raw image and convert it to Encase/EWF as it’s being written to
disk. This example shows a remote PC being remotely imaged to an exam-
iner workstation and saved as *.ewf files:

# ssh remote-pc "dd if=/dev/sda" | ewfacquirestream -D 16048539022588504422 -t

eepc-16048539022588504422

ewfacquirestream 20140608

Using the following acquiry parameters:

Image path and filename: eepc-16048539022588504422.E01

Case number: case_number

Description: 16048539022588504422

Evidence number: evidence_number

Examiner name: examiner_name

Notes: notes

Media type: fixed disk

Is physical: yes

EWF file format: EnCase 6 (.E01)

Compression method: deflate

Compression level: none

Acquiry start offset: 0

Number of bytes to acquire: 0 (until end of input)

Evidence segment file size: 1.4 GiB (1572864000 bytes)

Bytes per sector: 512

Block size: 64 sectors

Error granularity: 64 sectors

Retries on read error: 2

Zero sectors on read error: no

Acquiry started at: Jun 22, 2015 21:22:47

This could take a while.

...

Status: acquired 3.7 GiB (3999301632 bytes)

in 7 minute(s) and 38 second(s) with 8.3 MiB/s (8732099 bytes/second).

7815024+0 records in

7815024+0 records out

4001292288 bytes (4.0 GB) copied, 451.948 s, 8.9 MB/s

Acquiry completed at: Jun 22, 2015 21:30:25
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Written: 3.7 GiB (4001526432 bytes) in 7 minute(s) and 38 second(s) with 8.3 MiB/s

(8736957 bytes/second).

MD5 hash calculated over data: e86d952a68546fbdab55d0b205cd1c6e

ewfacquirestream: SUCCESS

In this example, a description of the PC (eepc) and the serial number
(16048539022588504422) are embedded into the filename of the image.
The final output from the dd command is shown on completion, directly
followed by the ewfacquirestream completion message.

You can use EnCase, Sleuth Kit, or any other tool that supports EWF to
forensically analyze the resulting acquired image.

# ls -l eepc-16048539022588504422.*
-rw-r----- 1 root root 1572852270 Jun 22 21:30 eepc-16048539022588504422.E01

-rw-r----- 1 root root 1572851461 Jun 22 21:30 eepc-16048539022588504422.E02

-rw-r----- 1 root root 857059301 Jun 22 21:30 eepc-16048539022588504422.E03

Using additional flags with ewfacquirestream can provide more case
metadata details, increase the compression, and provide other features. See
the ewfacquirestream(1) manual page for more information.

Live Imaging with Copy-On-Write Snapshots
In general, it doesn’t make sense to create a forensic image of a live system
when the disks you need to acquire contain the running OS. Blocks are
constantly changing on a live system. During the time needed to acquire a
sector-by-sector image, the filesystem will change significantly, causing the
imaged filesystem copy to be corrupt and inconsistent.

Sometimes it may not be feasible to boot a system with a forensic boot
CD to remotely acquire an image. On live servers that cannot be shut down,
the same method used to freeze the filesystem for backups might be lever-
aged in some situations. On systems that have Copy-on-Write (CoW) file-
systems, you might be able to do a certain amount of forensic imaging if
filesystem snapshots have associated block devices (Logical Volume Man-
ager [LVM] for example). This will provide a consistent snapshot of the
filesystem blocks at a certain point in time. If a CoW filesystem has no associ-
ated block device for a snapshot, the files will at least be frozen for a file-level
acquisition.

If the subject system is a cloud-based virtual machine, imaging the live
system over a network might be your only option, unless the cloud provider
can provide snapshot images.

Acquire Removable Media
Removable media are unique in that the drive device can be attached to a
system and operate without any media. Block devices that can be forensically
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acquired only become available upon insertion of the media. USB thumb
drives can be described as removable devices but not removable media. The
medium is not removed from the USB thumb drive unless it is a memory
card adapter or card reader.

This section covers basic removable media types, including memory
cards, optical discs, and magnetic tapes.

Memory Cards
Most memory cards behave similarly to regular drives. Their storage is rep-
resented as a linear sequence of blocks, giving the appearance of a regular
drive with sectors that you can access using any tool that operates on block
devices.

In Figure 6-1, a Micro SD card is inserted into an SD card adapter, which
is inserted into an SD card reader, which is inserted into a PC. Here, several
items of removable media are stacked and still appear as a block device that
you can image normally.

Figure 6-1: Removable memory card adapters

In this example, all three items were inserted and attached to the acqui-
sition host. The kernel detected them and created a /dev/sdg block device:

# dmesg

...

[65396.394080] usb-storage 3-2:1.0: USB Mass Storage device detected

[65396.394211] scsi host21: usb-storage 3-2:1.0

[65397.392652] scsi 21:0:0:0: Direct-Access SanDisk SDDR-113 1.00 PQ:

0 ANSI: 0
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[65397.393098] sd 21:0:0:0: Attached scsi generic sg5 type 0

[65398.073649] sd 21:0:0:0: [sdf] 3911680 512-byte logical blocks: (2.00 GB/1.87

GiB)

[65398.074060] sd 21:0:0:0: [sdf] Write Protect is on

...

The SD adapter has a write-protect tab enabled, which is visible in the
dmesg output.

In this example, the Micro SD card is imaged into a SquashFS evidence
container using the sfsimage script:

$ sfsimage -i /dev/sdf MicroSD.sfs

Started: 2016-05-08T11:19:35

Sfsimage version: Sfsimage Version 0.8

Sfsimage command: /usr/bin/sfsimage -i /dev/sdf

Current working directory: /home/holmes

Forensic evidence source: if=/dev/sdf

Destination squashfs container: MicroSD.sfs

Image filename inside container: image.raw

Aquisition command: sudo dc3dd if=/dev/sdf log=errorlog.txt hlog=hashlog.txt hash=md5

2>/dev/null | pv -s 2002780160

1.87GiB 0:02:34 [12.3MiB/s] [================================================>] 100%

Completed: 2016-05-08T11:22:10

After imaging, a memory card can be safely removed from the card
reader (assuming it has not been mounted).

Optical Discs
The different types of optical media vary in their physical and chemical
properties; however, once you insert them into an attached optical drive,
they have more similarities than differences. The three most common discs
(DVD, CD-ROM, and Blu-ray) have a 2048-byte sector size and appear as a
linear sequence of sectors (similar to a tape, but in a spiral). The primary
difference is the density of the data bits (which is abstracted by the device
hardware) and the disc capacity.

Imaging data discs is straightforward and similar to imaging hard disks
or flash media. An example of an optical disc being imaged with dc3dd is
shown here:

# dc3dd if=/dev/cdrom of=datacd.raw

dc3dd 7.2.641 started at 2016-01-13 23:04:31 +0100

compiled options:

command line: dc3dd if=/dev/cdrom of=datacd.raw

device size: 331414 sectors (probed), 678,735,872 bytes

sector size: 2048 bytes (probed)

678735872 bytes ( 647 M ) copied ( 100% ), 142 s, 4.5 M/s
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input results for device `/dev/cdrom':

331414 sectors in

0 bad sectors replaced by zeros

output results for file `datacd.raw':

331414 sectors out

dc3dd completed at 2016-01-13 23:06:53 +0100

Using common forensic tools, you can then analyze the datacd.raw
image file.

The recovery of Compact Disc Digital Audio (CDDA), or music CDs, is
different from that of data discs. They contain a set of music tracks that are
linear streams of pulse-code modulation (PCM) encoded bits. Unlike with
data CDs, there is some tolerance for errors. For this reason, tools have been
created to attempt the recovery of CDDA and manage drive issues such as
misalignment and frame jitter.7 Most CDDA tools are simple music CD rip-
pers that convert the CD tracks into audio files (reencoded into some other
audio format). In this example, cdparanoia performs a raw extraction of the
PCM data:

# cdparanoia --output-raw --log-summary 1- cdda.raw

cdparanoia III release 10.2 (September 11, 2008)

Ripping from sector 0 (track 1 [0:00.00])

to sector 251487 (track 15 [4:58.72])

outputting to cdda.raw

(== PROGRESS == [ | 251487 00 ] == :^D * ==)

Done.

This command rips the entire music CD into a single raw PCM audio
image file containing all the audio tracks. You can then import this file into
audio analysis software. Because the audio data has not been modified or
reencoded, there is no audio quality loss or degradation.

DVD and Blu-ray discs with digital rights management (DRM) and
region protection are a challenge to recover. Linux tools and instructions
to recover encrypted content exist but have been deliberately left outside the
scope of this book.

7. cdparanoia was developed when CD drives had more quality issues than today’s drives.

Forensic Image Acquisition 175



Magnetic Tapes
Tapes have essentially disappeared from home environments. But they are
still used in small, medium, and enterprise environments for backup and
archiving. On rare occasions, you might receive a request to recover data
from tapes. In corporate forensic labs for example, old tapes are sometimes
found when company departments are reorganizing or moving locations.

Historically, popular tapes used have been 4mm DAT, 8mm Exabyte,
and DLT tapes. Today, the most common types used are LTO and 8mm
DAT. The maximum native/compressed capacities of these tapes is
160GB/320GB for DAT-320 and 6TB/15TB for LTO-7. Modern LTO
drives also support encrypted tapes.

Modern tape drives are attached to host systems using a SAS or Fibre
Channel interface. Historically, nearly all tape drives followed the SCSI
Stream Command (SSC) standards (SSC-5 is the latest).

Tape technologies use their own concept of “files,” which are placed in
sequential order on a tape. Typically, a tape file consists of a backup archive
created by backup or archiving software. Tape files are not randomly acces-
sible like disk drives and optical discs. Instead, you access them by moving
or spacing forward or backward to the beginning of a file number and then
reading logical blocks until the end of the file.

Tapes have different markers that tell the tape drive information about
the position of the head on the tape (see Figure 6-2). The interesting
markers to understand here are as follows:

BOT or BOM (Beginning of Tape or Media) Tells the drive where it
can start reading or writing data.

EOF (End of File) Tells the drive that the end of a tape file has been
reached.

EOD (End of Data) Tells the drive that the end of the written data has
been reached (found immediately after the last tape file). This is the
logical end of the tape.

PEOT, EOT, or EOM ([Physical] End of Tape or Media) Tells the
drive that the end of the physical tape length has been reached.

BOT Filemarkers EOD EOT

file 0 file 1 . . . file n unused

Figure 6-2: Files and markers on a tape

When you’re acquiring tapes for forensic purposes, it’s essential to copy
every file on the tape up to the EOD marker (the last readable file on the
tape). It’s impossible to read past the EOD on a tape using standard SCSI
commands. Some forensic firms offer specialized hardware and services
which are able to recover data beyond the EOD.
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You can extract files from a tape using dd variants. In the example that
follows, three tape files are recovered from a tape. The nonrewinding device
for tape access is chosen, typically /dev/nst0 on Linux, to prevent the drive
from rewinding before all the files have been copied. The command is run
repeatedly, always using the same input device (it takes the next file on the
tape), until it reaches “0+0 records in,” indicating that all files have been
extracted:

# dcfldd if=/dev/nst0 of=file0.tape hashlog=hash0.log

0+46 records in

14+1 records out

# dcfldd if=/dev/nst0 of=file1.tape hashlog=hash1.log

22016 blocks (688Mb) written.

0+70736 records in

22105+0 records out

# dcfldd if=/dev/nst0 of=file2.tape hashlog=hash2.log

256 blocks (8Mb) written.

0+1442 records in

450+1 records out

# dcfldd if=/dev/nst0 of=file3.tape hashlog=hash3.log

0+0 records in

0+0 records out

After the tape files have been recovered, you can analyze the file type.
Often, you can just use a basic file type program to determine which archive
or backup format was used. In this example, two .tar files and one .dump file
were extracted:

# ls -l

total 722260

-rw-r----- 1 root root 471040 Jan 14 01:46 file0.tape

-rw-r----- 1 root root 724336640 Jan 14 01:46 file1.tape

-rw-r----- 1 root root 14766080 Jan 14 01:47 file2.tape

-rw-r----- 1 root root 0 Jan 14 01:47 file3.tape

-rw-r----- 1 root root 46 Jan 14 01:46 hash0.log

-rw-r----- 1 root root 46 Jan 14 01:46 hash1.log

-rw-r----- 1 root root 46 Jan 14 01:47 hash2.log

-rw-r----- 1 root root 46 Jan 14 01:47 hash3.log

# file *.tape

file0.tape: POSIX tar archive (GNU)

file1.tape: POSIX tar archive (GNU)

file2.tape: new-fs dump file (little endian), Previous dump Thu Jan 14 01:39:29

2016, This dump Thu Jan 1 01:00:00 1970, Volume 1, Level zero, type: tape

header, Label none, Filesystem / (dir etc), Device /dev/sdf1, Host lab-pc,

Flags 3

file3.tape: empty
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Each of the hash*.log files contains a separate MD5 hash for each tape
file extracted. In this example, file3.tape is empty and can be ignored.

RAID and Multidisk Systems
The forensic acquisition of Redundant Array of Independent Disks (RAID)
systems brings a number of challenges and might require additional steps to
complete. Capacity planning is important, because it may involve imaging a
large number of disks.

This section assumes the individual disks in a RAID have been imaged
separately and exist on the acquisition workstation. The goal here is to
assemble the imaged disks and make the meta device layer accessible as a
file or block device, allowing you to use forensic analysis tools.

Typically, RAID systems create their own header information at the
beginning of a disk (and sometimes at the end of a disk). The header is for
unique identifiers (UUIDs), array names, timestamps, RAID configuration
details, and other housekeeping information.

Proprietary RAID Acquisition
In situations where a hardware RAID controller was used and no software
exists to assemble the RAID offline, you may need to clone the RAID disks
and boot an examination system with the controller physically installed.

The examples in this section focus on Linux software RAID, but a num-
ber of open source tools are available that can support acquiring and analyz-
ing proprietary RAID systems.

For example, the following packages contain such tools and are avail-
able from the Debian software repository:

dpt-i2o-raidutils Adaptec I2O hardware RAID management utilities

array-info A command line tool for reporting RAID status for several
RAID types

cciss-vol-status HP SmartArray RAID Volume Status Checker

cpqarrayd A monitoring tool for HP (Compaq) SmartArray controllers

dpt-i2o-raidutils Adaptec I2O hardware RAID management utilities

mpt-status A tool to get RAID status out of mpt (and other) HW RAID
controllers

varmon VA RAID monitor

In addition to these software packages, the dmraid tool is able to iden-
tify RAID metadata for a number of proprietary formats. You can find a list
of supported formats by using the -l flag, as follows:

# dmraid -l

asr : Adaptec HostRAID ASR (0,1,10)

ddf1 : SNIA DDF1 (0,1,4,5,linear)
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hpt37x : Highpoint HPT37X (S,0,1,10,01)

hpt45x : Highpoint HPT45X (S,0,1,10)

isw : Intel Software RAID (0,1,5,01)

jmicron : JMicron ATARAID (S,0,1)

lsi : LSI Logic MegaRAID (0,1,10)

nvidia : NVidia RAID (S,0,1,10,5)

pdc : Promise FastTrack (S,0,1,10)

sil : Silicon Image(tm) Medley(tm) (0,1,10)

via : VIA Software RAID (S,0,1,10)

dos : DOS partitions on SW RAIDs

The dmraid tool uses the same device mapper facility shown in “Manage
Drive Failure and Errors” on page 159 (where the dmsetup tool was used to
simulate errors). The dmraid(8) manual page provides a number of exam-
ples for reassembling various proprietary RAID configurations.8

JBOD and RAID-0 Striped Disks
Just a Bunch Of Disks (JBOD) is the term used to indicate that a number
of disks have been concatenated into one logical drive (without any RAID
configuration for performance or redundancy). To assemble a group of
disks into a single JBOD device, you can use the dmsetup command.

When you’re building devices from multiple disks, it’s useful to have a
separate table file to define the device, offsets, and mappings. In this simple
text file, you can also include comments with information about the disks.

The following example has a JBOD with three disks of different sizes
(a charactaristic of JBOD systems is that any combination of drive sizes can
be used). The JBOD device mapper table file (jbod-table.txt in this example)
defines how they are concatenated. Run the dmsetup command with the table
file as input to create the device in /dev/mapper :

# cat jbod-table.txt

0 15589376 linear /dev/sdm 0

15589376 15466496 linear /dev/sdn 0

31055872 15728640 linear /dev/sdo 0

# dmsetup create jbod < jbod-table.txt

This table defines three mappings that construct the device file, which
will appear in /dev/mapper. Each line defines the offset in the mapper device,
the number of sectors to map, the target type (linear), and the target device
with an offset (sector zero here, because we want the whole device). Getting
the offsets right can be tricky and may require some calculation. Double-
check the offsets first if there are problems.

8. Heinz Mauelshagen,“dmraid - Device-Mapper RAID Tool: Supporting ATARAID Devices via
the Generic Linux Device-Mapper.” Paper presented at the Linux Symposium, Ottawa, Ontario,
July 20–23, 2005.
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The table is piped into the dmsetup create command, specifying the
name of the mapper device. After the device is created, you can use regular
forensic tools to operate on it. The following example shows the Sleuth Kit
fsstat command being used on the newly created device:

# fsstat /dev/mapper/jbod

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: Ext4

Volume Name:

Volume ID: cfd74d32abd105b18043840bfd2743b3

...

When you no longer need the mapper device, remove it by using the
dmsetup command, as follows:

# dmsetup remove /dev/mapper/jbod

See the dmsetup(8) manual page for more information about the
different device mapper types the dmsetup tool uses. You can use device
mappings for encryption, snapshots, RAID systems, and even simulating
errors and failing devices (which is useful for testing the behavior of foren-
sic tools).

RAID-0 striped disks are created for performance, not redundancy.
A group of disks in a RAID-0 configuration has the combined capacity of
all the drives, and disk access is distributed across the array (performance
increases as disks are added).

If you know the offsets and chunk size of a striped RAID-0 array, the
dmsetup tool can create a mapper device to represent the assembled array.

In the following example, a RAID-0 consisting of two striped disks is
attached to the acquisition host. It is known that the subject RAID system
has 2048 initial sectors containing metadata and that the chunk size is
128 sectors. You can then assemble the RAID as follows:

# dmsetup create striped --table '0 117243904 striped 2 128 /dev/sda 2048 /dev/sdb

2048'

You can analyze this /dev/mapper device using regular filesystem forensic
tools. An example using Sleuth Kit’s fls command on the newly created
device is shown here:

# fls /dev/mapper/striped

r/r 4-128-4: $AttrDef

r/r 8-128-2: $BadClus

r/r 8-128-1: $BadClus:$Bad

Don’t forget to remove the device when the tasks are completed.
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Microsoft Dynamic Disks
Microsoft created the Logical Disk Manager (LDM) to manage logical vol-
umes, and you can use the Linux-based tool ldmtool to analyze Microsoft
dynamic disks. The goal here is to make the volume available for block-level
access by forensic tools.

In this example, two subject disks with a volume created by Microsoft
LDM are attached to the acquisition host. An LDM disk group is identified
by its Globally Unique Identifier (GUID). You can scan the disks for the disk
group GUID, which will lead to more information about the disk group
when the ldmtool show command is used:

# ldmtool scan /dev/sda /dev/sdb

[

"04729fd9-bac0-11e5-ae3c-c03fd5eafb47"

]

# ldmtool show diskgroup 04729fd9-bac0-11e5-ae3c-c03fd5eafb47

{

"name" : "LENNY-Dg0",

"guid" : "04729fd9-bac0-11e5-ae3c-c03fd5eafb47",

"volumes" : [

"Volume1"

],

"disks" : [

"Disk1",

"Disk2"

]

}

The show command provides the disk group name and GUID, the vol-
ume names, and the names of disks. This is enough information to create a
mapper device.

Knowing the GUID and the volume name, you can create a volume
device:

# ldmtool create volume 04729fd9-bac0-11e5-ae3c-c03fd5eafb47 Volume1

[

"ldm_vol_LENNY-Dg0_Volume1"

]

This creates a device in /dev/mapper that corresponds to the filesystem
on the dynamic disk (this is equivalent to a partition device like /dev/sda1).
Then you can use regular forensic analysis tools to operate on this device.
An example using the Sleuth Kit fsstat command is shown as follows:

# fsstat /dev/mapper/ldm_vol_LENNY-Dg0_Volume1

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: NTFS
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Volume Serial Number: 0CD28FC0D28FAD10

OEM Name: NTFS

Version: Windows XP

METADATA INFORMATION

--------------------------------------------

First Cluster of MFT: 786432

First Cluster of MFT Mirror: 2

Size of MFT Entries: 1024 bytes

Size of Index Records: 4096 bytes

...

When you no longer need the device, remove it using the dmsetup com-
mand, as shown in “JBOD and RAID-0 Striped Disks” on page 179.

RAID-1 Mirrored Disks
Mirrored disks are simple and consist of two identical disks (or should
be if they were synchronized). Image both disks into separate image
files. Depending on the mirroring software or hardware, a header might
be in the beginning sectors of the disk that you need to skip when you’re
performing analysis work.

The following example shows mirrored disks containing an EXT4 par-
tition. The mirroring software (Linux Software RAID) used the first 32,768
sectors, and the mirrored filesystem starts at that offset on the physical disks
and without an offset for the multiple device,9 md0:

# fsstat /dev/md0

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: Ext4

Volume Name:

Volume ID: f45d47511e6a2db2db4a5e9778c60685

...

# fsstat -o 32768 /dev/sde

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: Ext4

Volume Name:

Volume ID: f45d47511e6a2db2db4a5e9778c60685

...

# fsstat -o 32768 /dev/sdg

FILE SYSTEM INFORMATION

--------------------------------------------

9. The Linux md driver orginally meant mirror device, and some OSes call them meta devices.
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File System Type: Ext4

Volume Name:

Volume ID: f45d47511e6a2db2db4a5e9778c60685

In this example, the same filesystem on md0 is also found at the 32k off-
set of the two physical devices (sde and sdg). The cryptographic checksums
of mirrored disks will probably not match each other, because the RAID
header information might be different (unique disk UUIDs and so on) and
the disks might not be perfectly synchronized.

Linux RAID-5
If multiple disks are part of a Linux RAID array, you can acquire them indi-
vidually and then assemble them using several methods. The dmsetup tool
provides an interface to mdadm using tables. The mdadm tool can operate
on devices that have been mapped or looped. In the following example,
three acquired drive images from a Linux MD RAID-5 setup are used.

An mmls analysis of the individual partition tables reveals a Linux RAID
partition at sector 2048 of each disk image (sda.raw, sdb.raw, and sdc.raw).
This sector offset is converted (using Bash math expansion) to a byte offset
for the losetup command:

# mmls sda.raw

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000002047 0000002048 Unallocated

02: 00:00 0000002048 0312580095 0312578048 Linux RAID (0xfd)

03: ----- 0312580096 0312581807 0000001712 Unallocated

# echo $((2048*512))

1048576

A read-only loop device is created for each of the disks in the array using
the calculated byte offset (2048 sectors, which is 1048576 bytes):

# losetup --read-only --find --show -o 1048576 sda.raw

/dev/loop0

# losetup --read-only --find --show -o 1048576 sdb.raw

/dev/loop1

# losetup --read-only --find --show -o 1048576 sdc.raw

/dev/loop2
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The preceding commands create loop devices corresponding to the
three acquired image files. You can assemble an array using mdadm, as
follows:

# mdadm -A --readonly /dev/md0 /dev/loop0 /dev/loop1 /dev/loop2

mdadm: /dev/md0 has been started with 3 drives.

Now you can access and analyze the RAID meta disk device using reg-
ular forensic tools on the /dev/md0 device. An example using Sleuth Kit’s
fsstat command is shown here:

# fsstat /dev/md0

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: Ext4

Volume Name:

Volume ID: 37b9d96d8ba240b446894383764412

...

You can also mount the newly created device and access it using regular
file tools. The normal Linux mount command can be used as follows:

# mkdir mnt

# mount /dev/md0 mnt

mount: /dev/md0 is write-protected, mounting read-only

When you’ve completed the analysis, reverse the steps for the cleanup
process, including using the stop command with the mdadm system:

# umount mnt

# rmdir mnt

# mdadm --stop /dev/md0

# losetup -d /dev/loop2

# losetup -d /dev/loop1

# losetup -d /dev/loop0

Depending on the system configuration, the Linux kernel may automat-
ically attempt to reassemble attached RAID devices if they’re detected, pos-
sibly starting a rebuild operation that could destroy evidence. It’s important
to use write blocking with live devices and ensure that read-only loop devices
and arrays are created.

Many of the techniques described in this chapter apply to loop devices
mapping to image files. More examples of creating and using loop devices
are shown in Chapter 8.

184 Chapter 6



Closing Thoughts
In this chapter, I covered the main topic of the book—forensic acquisi-
tion. You learned how to use the different dd-based tools, create images
with forensic formats, and use SquashFS as a forensic evidence container.
Various aspects of evidence preservation using cryptography were shown,
including hashing, hash windows, signing, and timestamping. You now have
a deeper understanding of error management and recovery when imaging
problematic media. You are able to image over a network and image remov-
able media and multi-disk (RAID) systems. This is the core of the forensic
acquisition process.
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7
FORENSIC IMAGE MANAGEMENT

This chapter covers various aspects of
managing forensic image files after acqui-

sition. Disk images are enormous compared
to typical files on a disk, and moving, copy-

ing, and converting large image files can be cumber-
some and time-consuming. You’ll learn a number of
techniques for managing large image files to help
overcome various challenges. These techniques include compressing and
splitting images for easier handling, securing images with encryption, and
converting images between formats. In addition, I describe procedures for
read-only mounting of an image for safe local browsing and demonstrate
forensic cloning (or disk duplication). I also discuss the secure, reliable
storage and network transfer of large image files. The chapter ends with a
description of secure wiping and disposal of images and files. I’ll begin with
the topic of managing image compression.

Manage Image Compression
Raw disk images are always the same size as the total number of sectors
they contain. The number of files or amount of data on the drive is irrele-
vant and does not affect the size of an uncompressed raw image. With the



current widespread use of multiterabyte disks, maneuvering images within
time and disk capacity constraints can be a challenge. Even simply copying
an image can take many hours to complete. You can reduce this problem
somewhat by keeping images compressed.

Compressing images in a forensic context involves sector-by-sector com-
pression of the entire drive (as opposed to compressing each file on the
disk). Disks with many gigabytes or terabytes of space that have never been
written to over the life of the drive will compress better, because much of
the drive still consists of untouched sectors filled with zeros. Well-used disks
won’t compress as well if most sectors on the drive have been allocated over
the lifetime of the drive and still contain residual data. Disk images with
large numbers of audio and video files will compress poorly as well, because
these files are already compressed with their own algorithms.

It’s important to choose the most appropriate and efficient compres-
sion tool and technique. Some tools might have file size limitations, either
for the original source file or the compressed destination file. Other tools
may be inefficient or use temporary files during compression, causing mem-
ory exhaustion or creating disk space issues. To solve some of these prob-
lems when you’re performing compression activity, you can use piping and
redirection.

One of the most useful features of working with a compressed forensic
image is the ability to use forensic tools against it without having to uncom-
press the entire image. But this is problematic with some compression
tools, because they’re not able to seek within a compressed file. Seeking
allows a program to randomly access any point in a file. Forensic formats
are designed to allow analysis programs on-the-fly, random access to com-
pressed images. The popular forensic formats all support image com-
pression, which usually occurs during acquisition, although not all tools
compress by default.

Standard Linux Compression Tools
Commonly used compression tools in the open source world today are
zip, gzip, and bzip (version 1 or 2). The examples in this section use gzip,
but you can use other compression tools as well. To attempt better com-
pression at the expense of time and CPU cycles, you can adjust the level of
compression.

Given enough disk space, you can simply compress a disk image file in
place, like this:

$ gzip image.raw

This command creates the file image.raw.gz and deletes the original file
on completion. Enough space needs to be available for the compressed and
uncompressed files to coexist during the compression process. The same
applies for uncompressing files using gunzip.
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You can also compress images on the fly during acquisition using piping
and redirection. For example:

# dcfldd if=/dev/sde | gzip > image.raw.gz

Here the input file is a raw disk device. Not specifying an output file
for dcfldd sends the image data stream to stdout, which is piped into gzip,
which is finally redirected into a compressed file.

The compressed file can be uncompressed to a raw image file, where
you can use forensic tools to directly operate on it. Alternatively, you can
pipe an uncompressed stream into some programs using stdout and stdin.
For example:

$ zcat image.raw.gz | sha256sum

1b52ab6c1ff8f292ca88404acfc9f576ff9db3c1bbeb73e50697a4f3bbf42dd0 -

Here zcat uncompresses the image and pipes it into a program to pro-
duce a sha256 cryptographic hash. It’s worth noting that the gzip file format
contains additional metadata, such as a creation timestamp, original file-
name, and other information. The hash of a gzip container (image.raw.gz)
will be different each time it’s created, even though the hash of the com-
pressed file inside will be the same.

EnCase EWF Compressed Format
The ewfacquire tool provides flags to control compression during the acqui-
sition process. For example:

# ewfacquire -c bzip2:best -f encase7-v2 /dev/sdj

ewfacquire 20150126

...

EWF file format: EnCase 7 (.Ex01)

Compression method: bzip2

Compression level: best

...

MD5 hash calculated over data: 9749f1561dacd9ae85ac0e08f4e4272e

ewfacquire: SUCCESS

In this example, the -c flag can specify a compression algorithm together
with a compression level. Here, the algorithm was bzip2 configured with
the best possible compression level. Because only EWFv2 formats support
bzip2, the format version encase7-v2 was specified as a parameter. Note that
ewftools needs to be compiled with bzip2 support.1

1. As of this writing, the most recent version of ewfacquire had bzip2 support temporarily
disabled (see section 20160404 in the ChangeLog file of the libewf software package).
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FTK SMART Compressed Format
The command line ftkimager tool supports compressed images during
acquisition, as the following example shows:

# ftkimager --compress 9 --s01 /dev/sdj image

AccessData FTK Imager v3.1.1 CLI (Aug 24 2012)

Copyright 2006-2012 AccessData Corp., 384 South 400 West, Lindon, UT 84042

All rights reserved.

Creating image...

Image creation complete.

Here the --s01 flag specifies the creation of a SMART ew-compressed
image, and the --compress flag sets the highest compression level. You can
use the --help flag to get more information about compression options for
ftkimager.

AFFlib Built-In Compression
Although AFFv3 has been deprecated (http://forensicswiki.org/wiki/AFF )
and the use of aimage is discouraged (http://forensicswiki.org/wiki/Aimage),
aimage’s use of AFFv3 compression is mentioned here for illustration
purposes.

The following example demonstrates imaging a disk using aimage and
specifying the LZMA compression algorithm (rather than the zlib default):

# aimage --lzma_compress --compression=9 /dev/sdj image.aff

im->outfile=image.aff

image.aff****************************** IMAGING REPORT ******************************
Input: /dev/sdj

Model: Nano S/N: 07A40C03C895171A

Output file: image.aff

Bytes read: 2,003,828,736

Bytes written: 628,991,770

raw image md5: 9749 F156 1DAC D9AE 85AC 0E08 F4E4 272E

raw image sha1: 9871 0FB5 531E F390 2ED0 47A7 5BE4 747E 6BC1 BDB0

raw image sha256: 85B7 6D38 D60A 91F6 A0B6 9F65 B2C5 3BD9 F7E7 D944 639C 6F40 B3C4

0B06 83D8 A7E5

Free space remaining on capture drive: 527,524 MB

The Sleuth Kit forensics software provides integrated support for AFFlib
compressed images. AFFv4 introduces the aff4imager tool, which adds addi-
tional features. This can be fournd at https://github.com/google/aff4/ .
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SquashFS Compressed Evidence Containers
Recall that using SquashFS as a forensic evidence container was described
in Chapter 6. When you’re creating a SquashFS file, you can tune several
compression parameters. Three compression algorithms (gzip, lzo, xz)
are available, various metadata from SquashFS can be compressed (inode
table, extended attributes), and other tweaks can be made as well. See the
squashfs(1) manual page for more information.

In this example, a raw image file was converted to a compressed
SquashFS file:

# mksquashfs image.raw image.sfs -comp lzo -noI

Parallel mksquashfs: Using 8 processors

Creating 4.0 filesystem on image.sfs, block size 131072.

...

Exportable Squashfs 4.0 filesystem, lzo compressed, data block size 131072

compressed data, uncompressed metadata, compressed fragments, compressed

xattrs

duplicates are removed

Filesystem size 615435.77 Kbytes (601.01 Mbytes)

31.45% of uncompressed filesystem size (1956923.96 Kbytes)

Inode table size 61232 bytes (59.80 Kbytes)

100.00% of uncompressed inode table size (61232 bytes)

Directory table size 31 bytes (0.03 Kbytes)

100.00% of uncompressed directory table size (31 bytes)

...

Here, the -comp flag sets the compression algorithm to lzo (gzip is the
default), and the -noI flag prevents compression of the inodes (of the
SquashFS container, not the evidence image).

The sfsimage shell script manages the creation of SquashFS forensic
evidence containers with a few added forensic features.

The use of compression is fundamental when you’re working with large
forensic images. However, even compressed images can still be very large to
manage. There is another method that makes this process easier: you can
split forensic images into multiple smaller pieces.

Manage Split Images
Managing acquired disk images can be problematic due to their large file
sizes. Breaking an image into smaller, easier-to-handle pieces can help solve
this problem. Consider the following examples in which a split image can be
beneficial:

• Network transfers over unstable connections can be done with multiple
smaller downloads using split images.

• A large image might exceed the maximum file size for a software tool.
Splitting the image offers a workaround.
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• Storage media, such as tapes, CDs, or DVDs, have a fixed maximum
capacity. Split images allow you to use a set of these media.

• Some filesystems (notably FAT) have a relatively small maximum
file size.

The most common use of split images in digital forensics is for the trans-
fer and storage of evidence. Historically, this has been done by burning the
image to a set of CDs or DVDs.

The GNU split Command
Standard Unix and Linux systems have the split tool for breaking a large file
into several smaller files. The following example uses the split command to
break an existing image into DVD-sized chunks:

$ split -d -b 4G image.raw image.raw.

$ ls

image.raw.00 image.raw.01 image.raw.02 image.raw.03 image.raw.04

...

The -d flag specifies that a numeric extension should be added to
image.raw. (note the trailing dot); the -b flag specifies the size of the chunks
made from the image.raw file.

Using a combination of piping between several tools, you can combine
compressing and splitting during acquisition to save time and space. Here’s
an example of a single command acquiring an image with dd, compressing
it with gzip, and splitting it into CD-sized chunks:

# dd if=/dev/sdb | gzip | split -d -b 640m - image.raw.gz.

The split command’s input file is -, which specifies stdin, and it splits
the compressed byte stream into pieces. It’s important to note that the parts
are not individually gzipped and cannot be individually uncompressed. The
split parts must be reassembled before they can be uncompressed.

Split Images During Acquisition
You can split an imaged hard disk into parts during the acquisition process
rather than in a separate step at a later date. Before acquiring a large disk,
consider whether you might need a split image in the future and what frag-
ment size would make the most sense. Starting with the right split image
could save you time and disk space during an investigation.

Split images are common in digital forensics and therefore are well sup-
ported by forensic acquisition and analysis tools. Typically, flags can set the
fragment size and customize the extension of a split image.

The dcfldd tool provides built-in splitting functionality. For example,
if you’ll later transfer an image to a third party via a set of 16GB USB sticks,
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you can use dcfldd to acquire an image using the split=16G flag before the
output file:

# dcfldd if=/dev/sdc split=16G of=image.raw

# ls

image.raw.000 image.raw.001 image.raw.002 image.raw.003 image.raw.004

...

The default extension is a three-digit number appended to the output
filename.

Using the dc3dd tool, you can split images during acquisition by spec-
ifying the output size with ofsz=. The file extensions are numerical, as
shown here:

# dc3dd if=/dev/sdh ofsz=640M ofs=image.raw.000

# ls -l

total 7733284

-rw-r----- 1 root root 671088640 Jan 14 10:59 image.raw.000

-rw-r----- 1 root root 671088640 Jan 14 10:59 image.raw.001

-rw-r----- 1 root root 671088640 Jan 14 10:59 image.raw.002

...

-rw-r----- 1 root root 671088640 Jan 14 11:00 image.raw.009

-rw-r----- 1 root root 671088640 Jan 14 11:00 image.raw.010

-rw-r----- 1 root root 536870912 Jan 14 11:00 image.raw.011

Be sure the file extension has enough zeros, or else dc3dd will fail
to complete and generate an error message, such as [!!] file extensions

exhausted for image.raw.0. The last file in the set will usually be smaller than
the others (unless the image size is perfectly divisible by the split file size).

EnCase tools typically default to splitting images during acquisition. You
can acquire a disk to a split EnCase image using ewfacquire by specifying a
maximum segment file size using the -S flag:

# ewfacquire -S 2G /dev/sdc

...

# ls

image.E01 image.E02 image.E03 image.E04 image.E05 image.E06

...

The commercial EnCase forensic suite can then use these images directly.
The ftkimager tool provides the --frag flag to save an image into parts

during acquisition, as shown in this example:

# ftkimager /dev/sdk image --frag 20GB --s01

AccessData FTK Imager v3.1.1 CLI (Aug 24 2012)

Copyright 2006-2012 AccessData Corp., 384 South 400 West, Lindon, UT 84042

All rights reserved.

...
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# ls -l

total 53771524

-rw-r----- 1 holmes root 2147442006 Jul 2 08:01 image.s01

-rw-r----- 1 holmes root 1038 Jul 2 08:43 image.s01.txt

-rw-r----- 1 holmes root 2147412323 Jul 2 08:01 image.s02

-rw-r----- 1 holmes root 2147423595 Jul 2 08:02 image.s03

-rw-r----- 1 holmes root 2147420805 Jul 2 08:02 image.s04

...

Here the disk is acquired with a maximum fragment size set at 20GB,
and the format is a SMART compressed image. Notice the addition of the
*.txt file containing the metadata. Unlike some forensic formats, this is not
embedded into FTK split files created by ftkimager.

Access a Set of Split Image Files
Forensic tools, such as Sleuth Kit, provide support for operating directly
on a set of split images without needing to reassemble them first. To list
the supported images in Sleuth Kit, use the -i list flag with any Sleuth Kit
image-processing tool:

$ mmls -i list

Supported image format types:

raw (Single raw file (dd))

aff (Advanced Forensic Format)

afd (AFF Multiple File)

afm (AFF with external metadata)

afflib (All AFFLIB image formats (including beta ones))

ewf (Expert Witness format (encase))

split (Split raw files)

In this example, there is support for split raw images (including Unix
split files), split AFF images, and split EnCase files (though this is not explic-
itly stated, split EnCase files are supported). Some of these image format
types might need to be explicitly included when compiling the Sleuth Kit
software.

In the following example, an EWF image is split into 54 pieces. Running
the img_stat command on the first file provides information about the com-
plete set of files:

$ img_stat image.E01

IMAGE FILE INFORMATION

--------------------------------------------

Image Type: ewf

Size of data in bytes: 121332826112

MD5 hash of data: ce85c1dffc2807a205f49355f4f5a029
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Using various tools, you can operate on split images directly. Most
Sleuth Kit commands will work with a set of split raw files when you specify
the first file of the split image type.

Recent versions of Sleuth Kit will automatically check for sets of split
files:

$ mmls image.raw.000

Earlier versions of Sleuth Kit may require that you specify a split
image type:

$ fls -o 63 -i split image.000 image.001 image.002

To check whether a set of split files is recognized, the img_stat command
will show the total bytes recognized, and for raw types, the byte offset ranges
for each piece:

$ img_stat image.raw.000

IMAGE FILE INFORMATION

--------------------------------------------

Image Type: raw

Size in bytes: 2003828736

--------------------------------------------

Split Information:

image.raw.000 (0 to 16777215)

image.raw.001 (16777216 to 33554431)

image.raw.002 (33554432 to 50331647)

image.raw.003 (50331648 to 67108863)

image.raw.004 (67108864 to 83886079)

...

An alternative method for determining whether split files are supported
is to run the command or tool with strace -e open and see if it opens each of
the split file pieces.

Splitting files and working with a set of split files are useful, but some-
times you need to reassemble them into a single image. This is shown in the
next section.

Reassemble a Split Image
Reassembling split forensic formats is generally not needed, because tools
that are compatible with a particular forensic format (EWF, SMART, or AFF)
should support split files.
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Because no header or meta information is contained in a raw image,
reassembly is simply a matter of concatenating the set of image fragments
into a single image. Doing this carefully should be a two-step process, as
shown here:

$ ls -1 image.raw.*
image.raw.000

image.raw.001

image.raw.002

image.raw.003

...

$ cat image.raw.* > image.raw

The ls -1 flag will list the files recognized by the shell-globbing pattern.
Be sure to confirm that this is a complete and ordered list before using it to
concatenate the files into a single image. If split pieces are missing or the
file order is wrong, the assembled parts will not create the correct forensic
image.

If you’ve received a stack of DVDs, each containing a fragment of a com-
pressed raw image, you can reassemble them as follows:

$ cat /dvd/image.raw.gz.00 > image.raw.gz

$ cat /dvd/image.raw.gz.01 >> image.raw.gz

$ cat /dvd/image.raw.gz.02 >> image.raw.gz

$ cat /dvd/image.raw.gz.03 >> image.raw.gz

...

Here, DVDs are repeatedly inserted and mounted on /dvd, and split
parts are added until the image file is restored. Note that > in the initial
cat command creates the image file, and >> in the subsequent commands
appends the data (not overwriting it). After all parts have been appended
to the destination file, the cryptographic hash of the uncompressed image
should match the one taken during acquisition.

You can also uncompress and assemble a set of split files from a com-
pressed image by piping all the split files into zcat and redirecting the out-
put to a file:

# cat image.raw.gz.* | zcat > image.raw

A useful method provided by AFFlib allows for the virtual reassembly of a
set of fragments using a FUSE filesystem. The affuse tool can present a set of
split files as a fully assembled raw image file, as follows:

# ls

image.raw.000 image.raw.011 image.raw.022 image.raw.033 image.raw.044

image.raw.001 image.raw.012 image.raw.023 image.raw.034 image.raw.045

...

#
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# affuse image.raw.000 /mnt

# ls -l /mnt

total 0

-r--r--r-- 1 root root 8011120640 1970-01-01 01:00 image.raw.000.raw

Here, a directory full of raw files is represented as a single disk image
file and is found in the /mnt virtual filesystem. You can directly operate on
this raw file using forensic tools.

Verify the Integrity of a Forensic Image
Verifying the cryptographic hash of an image is fundamental to perform-
ing digital forensics, and it’s the basis of preserving digital evidence. This
section provides examples of verifying an image’s cryptographic hashes and
signatures.

Verifying the preservation of evidence involves confirming that a cur-
rent cryptographic hash of an image is identical to a hash taken at an earlier
point in time. You can use hashing to verify a successful operation on a disk
or image (acquisition, conversion, transfer, backup, and so on). You can also
use it to verify that a disk or image file has not been tampered with over a
longer period of time (months or even years).

The requirements for hashing (procedures and algorithms) depend
on the legal jurisdiction where they are used and on the organizational
policies governing a forensic lab. Thus, no hashing recommendations are
provided here.

Verify the Hash Taken During Acquisition
After acquiring a disk, if you need to validate the acquisition hash, it’s a
simple (but possibly time-consuming) task of piping the contents of the
disk into a cryptographic hashing program. Using a different program to
validate a disk’s hash provides an independent verification at the tool level.
For example:

# img_stat image.E01

IMAGE FILE INFORMATION

--------------------------------------------

Image Type: ewf

Size of data in bytes: 2003828736

MD5 hash of data: 9749f1561dacd9ae85ac0e08f4e4272e

# dd if=/dev/sdj | md5sum

3913728+0 records in

3913728+0 records out

9749f1561dacd9ae85ac0e08f4e4272e -

2003828736 bytes (2.0 GB) copied, 126.639 s, 15.8 MB/s
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Here, the img_stat output indicates the MD5 acquisition hash recorded
by an EnCase imaging tool. A second tool, regular dd, is then used to recal-
culate the hash from the raw disk device. In this example, the two MD5
hashes match, confirming that the evidence integrity has been preserved.

Recalculate the Hash of a Forensic Image
Each of the forensic formats and the dd-based forensic tools can record or
log a hash value of a disk image. To validate the recorded hash, you can
recalculate the disk image’s hash. In the following example, the hash was
recorded during acquisition with dc3dd and stored in the hashlog.txt. The
hash can be verified as follows:

# grep "(md5)" hashlog.txt

5dfe68597f8ad9f20600a453101f2c57 (md5)

# md5sum image.raw

5dfe68597f8ad9f20600a453101f2c57 image.raw

The hashes match, confirming that the evidence file and the hash log
are consistent and thus indicating that the evidence integrity has been
preserved.

The following example validates the image stored in the metadata of
the EnCase format. In this example, a dedicated tool, ewfverify, is used to
validate the hash:

# ewfverify image.Ex01

ewfverify 20160424

Verify started at: May 14, 2016 14:47:32

This could take a while.

...

MD5 hash stored in file: 5dfe68597f8ad9f20600a453101f2c57

MD5 hash calculated over data: 5dfe68597f8ad9f20600a453101f2c57

ewfverify: SUCCESS

Here, the recalculated hash matches, confirming the consistency of the
EWF image file. This tool will automatically validate the hash of a set of split
files in the EnCase forensic format.

The affinfo tool performs similar validity checking for AFF files. In this
example, the SHA1 hash is validated:

$ affinfo -S image.aff

image.aff is a AFF file

...

Validating SHA1 hash codes.

computed sha1: 9871 0FB5 531E F390 2ED0 47A7 5BE4 747E 6BC1 BDB0

stored sha1: 9871 0FB5 531E F390 2ED0 47A7 5BE4 747E 6BC1 BDB0 MATCH
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This output confirms that the hash of the image contained inside the
AFF file is the same as the hash recorded in the AFF metadata.

Cryptographic Hashes of Split Raw Images
Calculating the cryptographic hash of a set of raw split files is straight-
forward, and you can do this by piping the concatenated parts into a hashing
program. This example calculates the sha256 hash of a set of split raw files:

$ cat image.raw.* | sha256sum

12ef4b26e01eb306d732a314753fd86de099b02105ba534d1b365a232c2fd36a -

This example assumes the filenames of the parts can be sorted in the
correct order (can be verified in this example with ls -1 image.raw.*). The
cat command is necessary here, as it is concatenating (assembling) all of the
pieces before they are piped into sha256sum.

You can verify the cryptographic hash of an image that has been com-
pressed and split into pieces by forming a command pipeline of several pro-
grams. In the following example, cat assembles the image and pipes it into
zcat for uncompression. The output of zcat is sent to the hashing program,
which produces a hash value upon completion:

$ cat image.raw.gz.* | zcat | md5sum

9749f1561dacd9ae85ac0e08f4e4272e -

Here, the cat command is necessary because it is concatenating all the
split pieces before passing to zcat. Using zcat image.raw.gz.* will fail because
it will try to uncompress each piece rather than the assembled image.

In the Unix community, useless use of cat (UUOC) describes using the cat

command to send a file to command when < could be used instead. Tradi-
tional Unix communities have given out UUOC awards to encourage more
efficient use of shell command redirection. However, the examples in this
section do need cat because they perform a concatenation function.

Identify Mismatched Hash Windows
As disks age, or as they are transported and handled, there’s a risk of dam-
age, possibly introducing bad sectors. If an original evidence disk produces
unreadable sector errors since it was first imaged, the cryptographic check-
sum for the disk will fail to match. Hash windows become valuable in this
case, because you can use them to identify more precisely which part of the
disk failed to match. More important, hash windows can show which areas of
a disk are still preserved, even though the hash for the entire disk has failed
to match.

The specified size of a hash window determines how often a new hash
is written during the acquisition of a disk or when you’re verifying disk hash
windows. When you’re comparing two lists of hashes for verification, both
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lists must use the same size of hash window. To find the mismatching areas,
you can compare the two hash logs using the Unix diff tool.

In the following example, a disk was imaged with dcfldd and a hash log
with a 10M hash window size was saved. A subsequent verification failed to
match the MD5 for the entire disk and provided a new hash log, also with a
10M hash window size:

$ diff hash1.log hash2.log

3c3

< 20971520 - 31457280: b587779d76eac5711e92334922f5649e

---

> 20971520 - 31457280: cf6453e4453210a3fd8383ff8ad1511d

193c193

< Total (md5): 9749f1561dacd9ae85ac0e08f4e4272e

---

> Total (md5): fde1aa944dd8027c7b874a400a56dde1

This output reveals mismatched hashes for the full image and also for
the range of bytes between 20971520 and 31457280. Dividing by the 512-
byte sector size identifies the sector range between 40960 and 61440 where
the hash mismatch occurred. The hashes on the rest of the disk are still
good; only the sectors with mismatched hashes have not been forensically
preserved. Content (blocks, files, portions of files, and so on) residing on a
hash-mismatched sector range can be excluded from the presented evidence
at a later stage. If two cryptographic hashes of a full image are a match, you
can assume that all the hash windows also match.

The cryptographic hashes of forensic images preserve the integrity of
collected evidence. However, the hash values themselves are not protected
against malicious or accidental modification. Confirming the integrity of the
calculated hashes can be preserved using cryptographic signing and time-
stamping. Confirming the validity of signatures and timestamps is shown in
the next section.

Verify Signature and Timestamp
The previous chapter demonstrated the use of GnuPG to sign a disk’s
hashes. You can verify the signature without having the signing private key.
The original person who signed the evidence is not needed; only their pub-
lic key is needed. This example verifies the gpg signature of the person who
signed the acquired disk image:

$ gpg < hash.log.asc

dc3dd 7.2.641 started at 2016-05-07 17:23:49 +0200

compiled options:

command line: dc3dd if=/dev/sda hof=image.raw ofs=image.000 ofsz=1G hlog=hash.log

hash=md5
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input results for device `/dev/sda':

5dfe68597f8ad9f20600a453101f2c57 (md5)

...

dc3dd completed at 2016-05-07 17:25:40 +0200

gpg: Signature made Sat 07 May 2016 17:29:44 CEST using RSA key ID CF87856B

gpg: Good signature from "Sherlock Holmes <holmes@digitalforensics.ch>"

Here, the contents of the signed message (the acquisition output and
hash) are displayed together with a gpg message indicating that the signa-
ture is valid.

For S/MIME signed messages, a similar command will validate (or invali-
date) the signature from a PEM file and looks like this:

$ gpgsm --verify image.log.pem

gpgsm: Signature made 2016-01-25 19:49:42 using certificate ID 0xFFFFFFFFABCD1234

...

gpgsm: Good signature from "/CN=holmes@digitalforensics.ch/EMail=holmes@

digitalforensics.ch"

gpgsm: aka "holmes@digitalforensics.ch"

Chapter 6 discussed using timestamping services to generate RFC-3161
timestamps from a timestamp authority. Validating a timestamp is similar
to validating a signature with S/MIME and requires the correct chain of
certificate authority (CA) certificates to be installed for verification to be suc-
cessful. This example verifies the previous timestamp created with FreeTSA
(http://freetsa.org/).

If the timestamping service’s CA certificate is not installed on your
system, it can be manually fetched. The TSA certificate should have been
returned as part of the timestamp when the request was made (because of
the -cert flag). For this example, the CA cert is fetched from FreeTSA as
follows:

$ curl http://freetsa.org/files/cacert.pem > cacert.pem

Assuming CA and TSA certificates are available to OpenSSL and valid,
you can validate the timestamp as follows:

$ openssl ts -verify -in hash.log.tsr -queryfile hash.log.tsq -CAfile cacert.pem

Verification: OK

The openssl ts command is used to verify the timestamp. The timestamp
query (tsq) and timestamp reponse (tsr) are provided, and in this example,
the file containing the timestamp server’s CA certificate is specified. The
third-party timestamp is valid (Verification: OK), indicating that the file
(and the forensic acquisition hashes it contains) has not been modified
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since the specified time. If a particular timestamp authority is expected to
be used permanently, you can add the CA certificates to the OS’s trusted
CA store.

AFFlib also has provisions for signing and validating signatures for
acquired images using X.509 certificates.

This section did not discuss the web-of-trust or the public key infra-
structure (PKI) needed to trust the keys being used to sign images and ver-
ify timestamps. The examples assume this trust is already established.

Convert Between Image Formats
Converting between forensic image formats can be advantageous for various
reasons. If a lab has new software or infrastructure and the current format
is unsupported or less efficient, converting to another format could be an
option. If you’ll be transferring an image to a third party, they might have
a preferred image format. If you are receiving an image from a third party,
you might want to convert it to your preferred format. This section provides
examples of converting between formats on the command line. Conversion
from a few source formats is shown, including EnCase, FTK, AFF, and raw
images. In addition, the examples demonstrate converting various formats
into SquashFS evidence containers.

When you’re converting between image formats, it’s preferable to use
pipes and redirection. Avoid tools that use temporary files. During the con-
version process, two copies of an image might coexist (one or both might
be compressed). To prepare for the conversion process, do some capacity
planning.

After conversion, check the hash values from the original image and the
destination to ensure a match.

Convert from Raw Images
Converting a raw image to another format is usually straightforward, because
you can use regular disk-imaging functionality. Instead of a raw device name,
the filename of the raw image is used.

The following examples show a raw image file being converted into
EnCase and FTK formats. The first example uses ewfacquire to convert
image.raw to EnCase Expert Witness format:

$ ewfacquire image.raw -t image -f encase7

ewfacquire 20160424

Storage media information:

Type: RAW image

Media size: 7.9 GB (7918845952 bytes)

Bytes per sector: 512

Acquiry parameters required, please provide the necessary input

Case number: 42
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Description: The case of the missing red stapler

Evidence number: 1

Examiner name: S. Holmes

Notes: This red USB stick was found at the scene

...

Acquiry completed at: May 14, 2016 15:03:40

Written: 7.3 GiB (7918846140 bytes) in 54 second(s) with 139 MiB/s

(146645298 bytes/second)

MD5 hash calculated over data: 5dfe68597f8ad9f20600a453101f2c57

ewfacquire: SUCCESS

Here, the specified source file is the raw image; -t is the base name of
the EnCase target *.e01 files. EnCase version 7 was specified, and when the
command is executed, a series of questions is asked. Because the raw file has
no case metadata, you need to enter it manually.

Converting from a raw image to FTK SMART is similar: you specify
the raw image as a source and manually add the case metadata. Using
ftkimage, you specify the case metadata on the command line, as shown
in this example:

$ ftkimager image.raw image --s01 --case-number 1 --evidence-number 1 --description

"The case of the missing red stapler" --examiner "S. Holmes" --notes "This USB

stick was found at the scene"

AccessData FTK Imager v3.1.1 CLI (Aug 24 2012)

Copyright 2006-2012 AccessData Corp., 384 South 400 West, Lindon, UT 84042

All rights reserved.

Creating image...

Image creation complete.

The --s01 flag specifies that a SMART compressed image will be created.
The base filename is specified simply as image, and appropriate file exten-
sions will be automatically added.

Converting an image to a SquashFS forensic evidence container is also
just a simple command if you use the sfsimage script, like this:

$ sfsimage -i image.raw image.sfs

Started: 2016-05-14T15:14:13

Sfsimage version: Sfsimage Version 0.8

Sfsimage command: /usr/bin/sfsimage -i image.raw

Current working directory: /exam

Forensic evidence source: if=/exam/image.raw

Destination squashfs container: image.sfs

Image filename inside container: image.raw

Aquisition command: sudo dc3dd if=/exam/image.raw log=errorlog.txt hlog=hashlog.txt

hash=md5 2>/dev/null | pv -s 7918845952
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7.38GiB 0:00:22 [ 339MiB/s] [=================================>] 100%

Completed: 2016-05-14T15:14:37

Here, the raw image file was specified together with the destination
SquashFS container filename. The sfsimage script builds the required
SquashFS pseudo device and adds the log and hash information as regular
text files. You can append additional case metadata to the evidence con-
tainer manually (with sfsimage -a).

You can’t directly access a gzip compressed raw image using typical
forensic tools because of the inability to seek (randomly access any block
within the file) within a gzip file. It’s best to convert such files into com-
pressed formats that are seekable. Then you can operate on them directly
using forensic analysis tools. In this example, a gzipped raw image file is
converted into a SquashFS compressed file using sfsimage:

$ zcat image.raw.gz | sfsimage -i - image.sfs

Started: 2016-05-14T15:20:39

Sfsimage version: Sfsimage Version 0.8

Sfsimage command: /usr/bin/sfsimage -i -

Current working directory: /exam

Forensic evidence source:

Destination squashfs container: image.sfs

Image filename inside container: image.raw

Aquisition command: sudo dc3dd log=errorlog.txt hlog=hashlog.txt hash=md5

2>/dev/null | pv -s 0

7.38GiB 0:00:38 [ 195MiB/s] [ <=> ]

Completed: 2016-05-14T15:21:18

The original file remains in raw form, but it’s now inside a compressed
filesystem. You can mount the resulting *.sfs file to access the raw image, as
shown here:

$ sfsimage -m image.sfs

image.sfs.d mount created

$ ls image.sfs.d/

errorlog.txt hashlog.txt image.raw sfsimagelog.txt

You can convert a raw image file into an AFF file by using a simple
affconvert command:

$ affconvert image.raw

convert image.raw --> image.aff

Converting page 119 of 119

md5: 9749f1561dacd9ae85ac0e08f4e4272e

sha1: 98710fb5531ef3902ed047a75be4747e6bc1bdb0

bytes converted: 2003828736

Total pages: 120 (117 compressed)

Conversion finished.
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Then you can add the case metadata with a separate tool, such as
affsegment. The affconvert tool provides sensible defaults for compres-
sion, and the resulting file has the *.aff extension with the basename of
the raw file.

The following and final example shows the conversion of a raw image
inside a SquashFS forensic evidence container to an AFF file using the
affconvert command:

# affconvert -Oaff image.sfs.d/image.raw

convert image.sfs.d/image.raw --> aff/image.aff

Converting page 953 of 953

md5: d469842a3233cc4e7d4e77fd81e21035

sha1: 9ad205b1c7889d0e4ccc9185efce2c4b9a1a8ec6

bytes converted: 16001269760

Total pages: 954 (954 compressed)

Conversion finished.

Because SquashFS is read-only, you need to tell affconvert to write the
output file to a different directory that is writable.

Convert from EnCase/E01 Format
The libewf package contains the ewfexport tool for converting EnCase EWF
(*.E0*) files to other formats. This includes the ability to read one or more
files and pipe them into other programs.

NOTE There is a bug in some older versions of ewfexport that appends the line ewfexport:

SUCCESS to the end of an image after an export to stdout. This added string will cause
a mismatch in the image MD5 hashes. The string is a fixed length of 19 bytes, so you
can suppress it by piping it through tail -c 19.

Manual Creation of a SquashFS Container
Throughout the book, you’ve seen examples of the sfsimage shell script. But
it’s useful to see one example of creating a SquashFS file without the script.
This next example will make it easier to understand how sfsimage works
internally.

The following EnCase acquisition contains 54 *.E0 files that will be
assembled into a single raw image and placed into a SquashFS evidence
container:

# ls

image.E01 image.E10 image.E19 image.E28 image.E37 image.E46

image.E02 image.E11 image.E20 image.E29 image.E38 image.E47

image.E03 image.E12 image.E21 image.E30 image.E39 image.E48

image.E04 image.E13 image.E22 image.E31 image.E40 image.E49

image.E05 image.E14 image.E23 image.E32 image.E41 image.E50

image.E06 image.E15 image.E24 image.E33 image.E42 image.E51
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image.E07 image.E16 image.E25 image.E34 image.E43 image.E52

image.E08 image.E17 image.E26 image.E35 image.E44 image.E53

image.E09 image.E18 image.E27 image.E36 image.E45 image.E54

To begin, you need a mksquashfs pseudo definition file to define the
commands that will create files inside the SquashFS container. The pseudo
definition file contains the target filename, file type, permissions, ownership,
and command to be executed. The output of that command will become
the contents of the defined filename inside the SquashFS filesystem.

In the following example, a file named pseudo_files.txt has been cre-
ated that contains two definitions. The first extracts the EnCase metadata
with ewfinfo and places it into image.txt (this metadata would otherwise be
lost). The second definition exports a raw image from the *.E0 files into
image.raw:

# cat pseudo_files.txt

image.txt f 444 root root ewfinfo image.E01

image.raw f 444 root root ewfexport -u -t - image.E01

The ewfexport flag -u allows the conversion to execute unattended
(otherwise it prompts the user with questions). The -t flag specifies the
target, which in this example is stdout or the dash -.

With this definition file, you can create the compressed filesystem con-
taining the generated files as follows:

# mksquashfs pseudo_files.txt image.sfs -pf pseudo_files.txt

Parallel mksquashfs: Using 12 processors

Creating 4.0 filesystem on image.sfs, block size 131072.

ewfexport 20160424

Export started at: May 12, 2016 19:09:42

This could take a while.

...

Export completed at: May 12, 2016 19:28:56

Written: 113 GiB (121332826112 bytes) in 19 minute(s) and 14 second(s) with

100 MiB/s (105141097 bytes/second)

MD5 hash calculated over data: 083e2131d0a59a9e3b59d48dbc451591

ewfexport: SUCCESS

...

Filesystem size 62068754.40 Kbytes (60614.02 Mbytes)

52.38% of uncompressed filesystem size (118492706.13 Kbytes)

...

The resulting SquashFS filesystem image.sfs will contain three files:
the raw image file image.raw, image.txt containing the metadata, and the
pseudo_files.txt file containing the definitions with the executed commands.
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The mksquashfs(1) manual page has more information about the flags and
options for creating SquashFS file systems.

You can view the contents of a SquashFS file with the unsquashfs com-
mand as follows:

# unsquashfs -lls image.sfs

...

-r--r--r-- root/root 121332826112 2016-05-12 19:09 squashfs-root/image.raw

-r--r--r-- root/root 770 2016-05-12 19:09 squashfs-root/image.txt

-rw-r----- root/root 98 2016-05-12 16:58 squashfs-root/

pseudo_files.txt

The final step is to verify the preservation of evidence by comparing
MD5 hash values. The ewfinfo command provides the MD5 hash calculated
during the original EnCase acquisition. A second MD5 checksum can be cal-
culated with md5sum on the newly converted raw image inside the SquashFS
container. To do this, you need to mount the SquashFS filesystem first. The
following example shows each of these steps:

# ewfinfo image.E01

ewfinfo 20160424

...

Digest hash information

MD5: 083e2131d0a59a9e3b59d48dbc451591

# mkdir image.sfs.d; mount image.sfs image.sfs.d

# md5sum image.sfs.d/image.raw

083e2131d0a59a9e3b59d48dbc451591 image.sfs.d/image.raw

The result shows that the two MD5 hashes match, indicating a suc-
cessfully preserved evidence conversion from EnCase to a raw image
inside a SquashFS container. A third matching MD5 hash can be seen in
the ewfexport output that was calculated during the conversion process.
The ewfexport tool can also convert, or export, to other EnCase formats.

When the mounted SquashFS filesystem image.sfs.d is no longer needed,
it can be unmounted with umount image.sfs.d. The sfsimage script manages
these steps for you.

Convert Files from EnCase to FTK
The ftkimager tool can convert from EnCase to FTK. In this example, a set
of EnCase *.e01 files are converted to SMART ew-compressed files with the
same name but with the *.s01 extension:

# ftkimager image.E01 image --s01

AccessData FTK Imager v3.1.1 CLI (Aug 24 2012)

Copyright 2006-2012 AccessData Corp., 384 South 400 West, Lindon, UT 84042

All rights reserved.
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Creating image...

Image creation complete.

Hashes are checked and added to the new FTK file. The original case
metadata is not added to the newly converted files. Instead, it’s extracted
from the original format and saved as a separate file with the same name but
with a *.txt extension (image.s01.txt in this example).

Convert from FTK Format
The command line ftkimager tool converts between EnCase and FTK for-
mats, and it allows you to use stdin and stdout for conversion with raw image
files.

In the following example, a set of compressed FTK SMART *.s01 files
are converted to the EnCase EWF *E01 format:

# ftkimager image.s01 image --e01

AccessData FTK Imager v3.1.1 CLI (Aug 24 2012)

Copyright 2006-2012 AccessData Corp., 384 South 400 West, Lindon, UT 84042

All rights reserved.

Creating image...

Image creation complete.

The case metadata is not transferred to the new format but is automati-
cally saved to a separate file (image.E01.txt).

The ftkimager can convert SMART *.s01 files to stdout, where you can
redirect them to raw image files or pipe them into other programs. In the
following example, a set of FTK SMART files are converted into a SquashFS
forensic evidence container using ftkimager output piped into sfsimage:

# ftkimager sandisk.s01 - | sfsimage -i - sandisk.sfs

Started: 2016-05-12T19:59:13

Sfsimage version: Sfsimage Version 0.8

Sfsimage command: /usr/bin/sfsimage -i -

Current working directory: /exam

Forensic evidence source:

Destination squashfs container: sandisk.sfs

Image filename inside container: image.raw

Aquisition command: sudo dc3dd log=errorlog.txt hlog=hashlog.txt hash=md5

2>/dev/null | pv -s 0

AccessData FTK Imager v3.1.1 CLI (Aug 24 2012)

Copyright 2006-2012 AccessData Corp., 384 South 400 West, Lindon, UT 84042

All rights reserved.

14.5GiB 0:01:37 [ 151MiB/s] [ <=> ]

Completed: 2016-05-12T20:00:51
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# sfsimage -a sandisk.s01.txt sandisk.sfs

Appending to existing 4.0 filesystem on sandisk.sfs, block size 131072

When you’re converting from an FTK format into a raw disk image, the
case metadata is not transferred. You need to manually save the case meta-
data, which is usually found in a separate text file. You can add this to the
SquashFS container as shown in the previous example with the sfsimage -a

command.
After performing a format conversion of any kind, you should verify

the hash value separately on the destination format to ensure the evidence
integrity has been preserved.

Convert from AFF Format
The affconvert tool can convert AFF images to a raw image (and from a raw
image to the AFF format). The affconvert tool does not use stdin or stdout;
instead, it reads or creates stand-alone files. The following simple example
shows converting an AFF file to a raw image:

$ affconvert -r image.aff

convert image.aff --> image.raw

Converting page 96 of 96

bytes converted: 1625702400

Conversion finished.

To convert a raw image to an AFF format, simply use affconvert

image.raw, and the corresponding image.aff file will be created.
To use piping and redirection with AFF files, you can use the affcat

tool. The previous example can be also be done with affcat and redirected
to a file (without any status or completion information, which is useful for
scripts) as follows:

$ affcat image.aff > image.raw

To convert an AFF image to EnCase or FTK, the affcat tool can pipe an
image via stdout or stdin into the appropriate tool, creating a new image in
the desired format. For example, you can convert from AFF to a compressed
FTK SMART image like this:

$ affcat image.aff | ftkimager - image --s01

AccessData FTK Imager v3.1.1 CLI (Aug 24 2012)

Copyright 2006-2012 AccessData Corp., 384 South 400 West, Lindon, UT 84042

All rights reserved.

Creating image...

Image creation complete.
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Here, the - represents the stdin file descriptor receiving the raw image
data, image is the base filename, and the final flag --s01 specifies the com-
pressed format.

Similarly, you can convert to various EnCase formats using efwacquire-
stream. For example:

$ affcat image.aff | ewfacquirestream -C 42 -E 1 -e "S. Holmes" -D "Data theft

case" image

ewfacquirestream 20160424

Using the following acquiry parameters:

Image path and filename: image.E01

Case number: 42

Description: Data theft case

Evidence number: 1

Examiner name: S. Holmes

...

Acquiry completed at: May 14, 2016 15:41:42

Written: 1.8 GiB (2003934492 bytes) in 10 second(s) with 191 MiB/s (200393449

bytes/second)

MD5 hash calculated over data: 9749f1561dacd9ae85ac0e08f4e4272e

ewfacquirestream: SUCCESS

In the previous AFF conversion examples, the case metadata (case
name, examiner name, acquisition times, hashes, and so on) is not pre-
served in the conversion from AFF to other formats. But you can export this
information using affinfo and then add or save it manually to the destination
format. Depending on the tool, you can also include metadata as command
line flags as seen in the previous example with -C 42 -E 1 -e "S. Holmes"

-D "Data theft case".
This final example demonstrates converting an AFF file to a compressed

SquashFS forensic evidence container using sfsimage:

$ affcat image.aff | sfsimage -i - image.sfs

Started: 2016-05-14T15:47:19

Sfsimage version: Sfsimage Version 0.8

Sfsimage command: /usr/bin/sfsimage -i -

Current working directory: /exam

Forensic evidence source:

Destination squashfs container: image.sfs

Image filename inside container: image.raw

Aquisition command: sudo dc3dd log=errorlog.txt hlog=hashlog.txt hash=md5

2>/dev/null | pv -s 0

1.87GiB 0:00:06 [ 276MiB/s] [ <=> ]

Completed: 2016-05-14T15:47:26
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You can extract the metadata from AFF files using affinfo and then add
it to the SquashFS forensic evidence container as follows:

$ affinfo image.aff > affinfo.txt

$ sfsimage -a affinfo.txt image.sfs

Appending to existing 4.0 filesystem on image.sfs, block size 131072

Once the image is converted, compare the hash values of the original
image and the destination to ensure a match.

Secure an Image with Encryption
An important but often neglected component of digital forensics is informa-
tion security. You should consider the information you acquire and extract
during an investigation as sensitive and adequately protect its security.

The loss of data confidentiality may have undesired consequences. For
example, it may violate organizational policy requirements, jeopardize legal
and regulatory compliance, raise victim privacy issues, and do damage to the
reputation of the investigating organization. Failing to adequately protect
acquired evidence could result in damage to any of the parties involved,
including the investigators and their employer, the victim, the defendant,
and other participating parties. Leaked information could also interfere
with or compromise an ongoing investigation.

This section focuses on methods for ensuring that information is pro-
tected, in particular, maintaining security during data transfer and storage
(both long- and short-term storage). Adding security to images increases
the complexity and the time needed to encrypt and then later decrypt the
images, but the examples you’ll see here attempt to keep this process as
simple and efficient as possible. Basic symmetric encryption is used instead
of more complex PKI or web-of-trust systems.

In addition to the methods shown in this section, the ZIP archive format
could be used for encryption. Newer versions with the ZIP64 extensions sup-
port file sizes larger than 4GB. ZIP has the advantage of high compatability
with other platforms such as Windows.

GPG Encryption
Using symmetric encryption, you can easily encrypt disk images for protec-
tion during network transfer or storage. GNU Privacy Guard (GPG) encryp-
tion provides a free implementation of the OpenPGP standard defined by
RFC-4880. It’s an alternative to the traditional PGP encryption created by
Phil Zimmerman in the early 1990s.

It’s useful to start the agent when you’re using GPG. (The agent is
started automatically when using gpg2.) This is typically done at login with
the following command:

$ eval $(gpg-agent --daemon)
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For all the examples that follow, the -v flag is used to increase verbosity.
This makes the output more useful for documentation purposes (both
in this book and for creating formal forensic reports describing the steps
taken).

Using GPG to encrypt an existing image is very simple, as shown here:

$ gpg -cv image.raw

gpg: using cipher AES

gpg: writing to `image.raw.gpg'

Enter passphrase:

A passphrase is requested, and the image is encrypted with the default
symmetric encryption algorithm, creating a new file with the extension .gpg.
The size of the image is smaller because GPG compresses as it encrypts. This
can be seen here:

$ ls -lh

total 1.2G

-r--r----- 1 holmes holmes 1.9G May 14 15:56 image.raw

-rw-r----- 1 holmes holmes 603M May 14 15:57 image.raw.gpg

The previous example showed encrypting a file in place. But you can
also encrypt on the fly during acquisition:

$ sudo dcfldd if=/dev/sde | gpg -cv > image.raw.gpg

Enter passphrase:

gpg: using cipher AES

gpg: writing to stdout

241664 blocks (7552Mb) written.

241664+0 records in

241664+0 records out

Here, dcfldd acquires the attached disk via /dev/sde and pipes it directly
into the GPG program. The encrypted output of GPG is then redirected to a
file. The sudo command escalates privileges to root in order to read the raw
device.

Decrypting a GPG-encrypted image is just as simple as encrypting one.
The only differences are the use of the decryption flag and the requirement
to specify an output file (by default, it outputs to stdout). In the following
example, a GPG-encrypted image file is decrypted to a regular (unpro-
tected) file:

$ gpg -dv -o image.raw image.raw.gpg

gpg: AES encrypted data

Enter passphrase:

gpg: encrypted with 1 passphrase

gpg: original file name='image.raw'
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This example demonstrates symmetric encryption without signing.
You can also use GPG public and private keys to encrypt, decrypt, and
sign images. The integrity is verified by comparing the hash of the GPG-
encrypted image with the hash of the raw image file, as follows:

$ gpg -dv image.raw.gpg | md5sum

gpg: AES encrypted data

Enter passphrase:

gpg: encrypted with 1 passphrase

gpg: original file name='image.raw'

5dfe68597f8ad9f20600a453101f2c57 -

$ md5sum image.raw

5dfe68597f8ad9f20600a453101f2c57 image.raw

When you’re decrypting an image, you need to do some capacity plan-
ning. After decryption, two copies of the image will exist (one or both will be
compressed).

A GPG-encrypted file is not seekable, so you cannot operate on its con-
tents directly with forensic analysis tools.

OpenSSL Encryption
Other cryptographic systems can also provide security for disk images. The
OpenSSL toolkit (http://www.openssl.org/) provides a number of algorithms
you can use to encrypt files. For example, to password encrypt an image with
256-bit AES using cipher block chaining mode, use this command:

# openssl enc -aes-256-cbc -in image.raw -out image.raw.aes

enter aes-256-cbc encryption password:

Verifying - enter aes-256-cbc encryption password:

OpenSSL is flexible regarding cipher types and modes, providing
dozens of choices. Also supported are piping and redirection, and you can
easily perform encryption during acquisition, for example:

# dcfldd if=/dev/sdg | openssl enc -aes-256-cbc > image.raw.aes

enter aes-256-cbc encryption password:

Verifying - enter aes-256-cbc encryption password:

241664 blocks (7552Mb) written.

241664+0 records in

241664+0 records out

Decrypting an OpenSSL-encrypted file is also relatively straightforward,
provided you know the encryption algorithm, as shown here:

# openssl enc -d -aes-256-cbc -in image.raw.aes -out image.raw

enter aes-256-cbc decryption password:
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The addition of the -d flag signifies this is a decryption operation (enc
specifies that symmetric ciphers are being used). Because OpenSSL doesn’t
provide an automatic method to detect which symmetric encryption was
used, it’s important to document how the file was encrypted.

Unless specifically compiled with zlib, OpenSSL doesn’t compress
files. To add compression on the fly during an acquisition, add gzip to the
pipeline, like this:

# dcfldd if=/dev/sdg | gzip | openssl enc -aes-256-cbc > image.raw.gz.aes

enter aes-256-cbc encryption password:

Verifying - enter aes-256-cbc encryption password:

241664 blocks (7552Mb) written.

241664+0 records in

241664+0 records out

To verify the cryptographic hash of the image, you can run a similar
command pipe, as follows:

$ openssl enc -d -aes-256-cbc < image.raw.gz.aes | gunzip | md5sum

enter aes-256-cbc decryption password:

4f9f576113d981ad420bbc9c251bea0c -

Here, the decryption command takes the compressed and encrypted file
as input and pipes the decrypted output to gunzip, which outputs the raw
image to the hashing program.

Some implementations of ZIP also support built-in encryption and can
be used to secure images and other evidence files.

Forensic Format Built-In Encryption
GPG and OpenSSL are well-known tools for performing various encryption
tasks, providing compatibility and interoperability with other tools. However,
they’re not designed for digital forensics, and encrypted image files cannot
be used directly by standard forensic tools (they must be decrypted first).
Some versions of the popular forensic formats discussed throughout this
book support randomly accessible encrypted images.

The ftkimager program can protect image files using a password or a
certificate. An example of encrypting with a password (monkey99) during
acquisition is shown here:

# ftkimager --outpass monkey99 --e01 /dev/sdg image

AccessData FTK Imager v3.1.1 CLI (Aug 24 2012)

Copyright 2006-2012 AccessData Corp., 384 South 400 West, Lindon, UT 84042

All rights reserved.

Creating image...

Image creation complete.
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NOTE Including a password in command parameters is generally bad practice. The password
is visible in the shell history, and anyone can view the password in the process table.

Attempting to access an encrypted image without a password, or with
the incorrect password, will generate the following error messages:

** Source is encrypted; please provide credentials for decryption.

** AD Decryption setup failed.

Operating on an encrypted image requires including the password on
the command line, as follows:

# ftkimager --inpass monkey99 image.E01 - > image.raw

AccessData FTK Imager v3.1.1 CLI (Aug 24 2012)

Copyright 2006-2012 AccessData Corp., 384 South 400 West, Lindon, UT 84042

All rights reserved.

Some versions of the EWF format support encryption, and as of this
writing, libewf support was at various stages of development. Refer to the
latest source code for current encrypted-format support.

The AFFlib suite allows you to directly access encrypted images via
the Advanced Forensics Format (AFF) library. From the start, AFFlib was
developed with information security in mind. It has a number of encryp-
tion possibilities for protecting forensic images, including password-based
(symmetric) and certificate-based (X.509) encryption. You can add the pro-
tection to an existing acquired image using the affcrypto tool. Here is an
example:

# affcrypto -e -N monkey99 image.aff

image.aff: 967 segments; 0 signed; 967 encrypted; 0 pages;

0 encrypted pages

Recent versions of dd_rescue implement a plugin interface and (at
the time of this writing) had plugins for LZO compression, cryptographic
hashing, and symmetric encryption (AES). The following example shows
imaging a disk (/dev/sdc) and saving the output in encrypted form using the
AES plugin:

# dd_rescue -L crypt=enc:passfd=0:pbkdf2 /dev/sdc samsung.raw.aes

dd_rescue: (info): Using softbs=128.0kiB, hardbs=4.0kiB

dd_rescue: (input): crypt(0): Enter passphrase:

dd_rescue: (warning): some plugins don't handle sparse, enabled -A/--nosparse!

dd_rescue: (info): expect to copy 156290904.0kiB from /dev/sdc

dd_rescue: (info): crypt(0): Derived salt from samsung.raw.aes=00000025433d6000

dd_rescue: (info): crypt(0): Generate KEY and IV from same passwd/salt

dd_rescue: (info): ipos: 156286976.0k, opos: 156286976.0k, xferd: 156286976.0k

errs: 0, errxfer: 0.0k, succxfer: 156286976.0k

+curr.rate: 38650kB/s, avg.rate: 56830kB/s, avg.load: 14.9%
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>----------------------------------------.< 99% ETA: 0:00:00

dd_rescue: (info): read /dev/sdc (156290904.0kiB): EOF

dd_rescue: (info): Summary for /dev/sdc -> samsung.raw.aes

dd_rescue: (info): ipos: 156290904.0k, opos: 156290904.0k, xferd: 156290904.0k

errs: 0, errxfer: 0.0k, succxfer: 156290904.0k

+curr.rate: 29345kB/s, avg.rate: 56775kB/s, avg.load: 14.9%

>-----------------------------------------< 100% TOT: 0:45:53

If examiners in a forensics lab expect high volumes of encryption, sign-
ing, and timestamping of images and evidence, it’s worth investing the use
of a PKI. This could be an in-house PKI system or an external commercial
PKI provider.

General Purpose Disk Encryption
The examples in the previous sections focused on protecting individual files
or file containers. An alternative is to protect the entire drive where the
image files reside. You can do this with filesystem encryption, in hardware,
in user space, or in the kernel. You’ll see several examples in this section.

There are high-capacity secure external drives on the market that can be
used to safely transport image files, such as Lenovo’s ThinkPad Secure Hard
Drives, one of which is shown in Figure 7-1. These drives are OS indepen-
dent and encrypt drive contents with a pin entered in a physical keypad on
the device.

Figure 7-1: ThinkPad Secure Hard Drive

TrueCrypt was once the most popular free and cross-platform file-
system software available. But in May 2014, an unexpected and unexplained
announcement from the developers recommended people find alternatives
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to TrueCrypt because development was stopped. A number of forks and
compatible projects resulted, several of which are listed here:

• VeraCrypt: https://veracrypt.codeplex.com/

• tc-play: https://github.com/bwalex/tc-play/

• CipherShed: https://ciphershed.org/

• zuluCrypt: http://mhogomchungu.github.io/zuluCrypt/ (not an implemen-
tation of TrueCrypt but a TrueCrypt manager worth mentioning)

The rest of the examples in this section use VeraCrypt. As of this writing,
VeraCrypt was under active development and gaining in popularity as an
alternative to TrueCrypt.

The following example encrypts an empty external drive in its entirety.
You can then use the encrypted container for secure transfer or storage of
evidence data. The veracrypt tool asks a number of questions regarding the
setup of the encrypted container. Note that in this example, /dev/sda is an
examiner’s drive, not a subject drive.

# veracrypt -c /dev/sda

Volume type:

1) Normal

2) Hidden

Select [1]:

Encryption Algorithm:

1) AES

2) Serpent

3) Twofish

4) AES(Twofish)

5) AES(Twofish(Serpent))

6) Serpent(AES)

7) Serpent(Twofish(AES))

8) Twofish(Serpent)

Select [1]:

Hash algorithm:

1) SHA-512

2) Whirlpool

3) SHA-256

Select [1]:

Filesystem:

1) None

2) FAT

3) Linux Ext2

4) Linux Ext3

5) Linux Ext4

6) NTFS
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Select [2]: 5

Enter password:

Re-enter password:

Enter PIM:

Enter keyfile path [none]:

Please type at least 320 randomly chosen characters and then press Enter:

The VeraCrypt volume has been successfully created.

The drive has now been initialized as a VeraCrypt container (this can
take a long time, depending on the speed of the PC and the size of the
drive). To mount a VeraCrypt volume, you use a simple command that
includes the source device and the mount point:

# veracrypt /dev/sda /mnt

Enter password for /dev/sda:

Enter PIM for /dev/sda:

Enter keyfile [none]:

Protect hidden volume (if any)? (y=Yes/n=No) [No]:

# veracrypt -l

1: /dev/sda /dev/mapper/veracrypt1 /mnt

Safely removing the device requires “dismounting” the VeraCrypt vol-
ume and is also done using a simple command that specifies the mount
point:

# veracrypt --dismount /mnt

At this point, you can physically detach the drive from the system. The
encrypted drive in this example is an entire raw device, but it’s also possible
to use a VeraCrypt container file. The mount point in this example is /mnt,
but it can be anywhere in the filesystem.

There are other full-disk encryption systems that can be used to secure
forensic image files and other data. You can use self-encrypting drives
(SEDs), discussed in detail in “Identify and Unlock Opal Self-Encrypting
Drives” on page 128, with the sedutil-cli command to create an encrypted
drive for storage and transport. Filesystem encryption, such as Linux LUKS
and dm-crypt, offers similar levels of protection. Although these encryption
systems will secure evidence data on a drive, they might not be interoperable
with other OSes (Windows or OS X, for example).
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Disk Cloning and Duplication
In some situations, a clone or duplicate copy of a disk is preferred to an
image file. Each duplicate is an exact sector-by-sector copy of the original
disk. A newly cloned disk will have a cryptographic checksum that matches
the original. A cloned disk can be useful for several reasons:

• To use analysis tools and methods that require writing to disk

• To boot a PC with the disk clone

• To reconstruct RAID arrays using proprietary controllers

Cloning disks is a straightforward process; it is basically acquisition
in reverse. Be sure to exercise caution during the duplication process,
because you could destroy data if the wrong device is mistakenly used as
the destination.

Prepare a Clone Disk
The size (number of sectors) of the destination, or clone, disk must be
equal to or larger than the original disk. Because cloning involves a sector-
by-sector copy, the destination disk must have the capacity to hold all sectors
of the original disk. In some cases, having a larger destination disk is not a
problem, because the PC and OS will be limited to what was defined in the
partition table and ignore the rest of the disk. In other cases, duplicating
the exact number of sectors of the disk is important, as software and tools
may have certain sector number expectations. Some examples include the
analysis of GPT partitions (where a backup is stored at the end of a disk) and
RAID systems, and the analysis of certain strains of malware that partly reside
in the final sectors of the disk.

Securely wiping (with zeroed sectors) the destination disk before
cloning is critical to remove traces of previous data and reduce the risk
of contaminating the clone.

Use HPA to Replicate Sector Size
The HPA can be used to simulate the same number of sectors on the cloned
disk as on the original.2 Setting the HPA on a cloned disk is beneficial if
there is an expectation of the exact same number of sectors as the original.
This is especially important when you’re reconstructing a RAID system with
a proprietary controller or duplicating a disk with data expected in the final
sectors of the disk.

NOTE You should know the exact sector count of the original drive (this was determined
when the drive was attached to the examination host) before setting the HPA with the
hdparm tool.

2. The sector size could also be replicated using a DCO.
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In this example, the HPA on a 500GB disk is set to duplicate a 120GB
drive. The original disk reports 234441648 512-byte sectors, which you can
use to set the maximum visible sectors on the clone drive. Use the following
commands:

# hdparm -N /dev/sdk

/dev/sdk:

max sectors = 976773168/976773168, HPA is disabled

# hdparm --yes-i-know-what-i-am-doing -N p234441648 /dev/sdk

/dev/sdk:

setting max visible sectors to 234441648 (permanent)

max sectors = 234441648/976773168, HPA is enabled

# hdparm -I /dev/sdk

...

LBA user addressable sectors: 234441648

...

device size with M = 1000*1000: 120034 MBytes (120 GB)

...

The first hdparm -N command shows the initial state with 500GB of acces-
sible sectors and a disabled HPA. The second hdparm command requires
the --yes-i-know-what-i-am-doing flag to configure dangerous settings, such
as changing the sector size. The -N p234441648 specifies the number of sec-
tors. It is prefixed with the letter p so the change is permanent across drive
restarts. The final hdparm command checks whether the drive is now report-
ing the new sector size, which is now the same as that of the clone (120GB).

Write an Image File to a Clone Disk
To write an image to a new disk, use the same tools as when you acquire a
disk but in reverse.

You can create a disk clone directly from the original suspect disk or
from a previously acquired image file using the standard dd utilities. This
example shows writing a raw image file to a clone disk using dc3dd:

# dc3dd if=image.raw of=/dev/sdk log=clone.log

dc3dd 7.2.641 started at 2016-01-16 01:41:44 +0100

compiled options:

command line: dc3dd if=image.raw of=/dev/sdk log=clone.log

sector size: 512 bytes (assumed)

120034123776 bytes ( 112 G ) copied ( 100% ), 663 s, 173 M/s

input results for file `image.raw':

234441648 sectors in
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output results for device `/dev/sdk':

234441648 sectors out

dc3dd completed at 2016-01-16 01:52:48 +0100

Now you can verify the cryptographic hash against the original. If the
sector count of the original and clone disks don’t match, either an error is
generated (if the clone doesn’t have enough sectors to complete the dupli-
cation activity) or the hash values won’t match.

You can write a set of split images, compressed images, or encrypted
images back to a clone disk without creating a regular image file first.

You can also use non-raw formats, such as AFF, EnCase EWF, or FTK
SMART, to create clone disks. If a particular forensic tool cannot write an
image back to a device, it might be able to pipe a raw image into a dd pro-
gram, which can.

Image Transfer and Storage
Managing the transfer and long-term storage of forensic images safely and
successfully requires some thought and planning. Often, situations occur
in which you need to transfer an image to another party, such as another
department within a large organization, an independent third-party foren-
sics firm, or a law enforcement agency.

Several factors influence how transfers are completed, primarily the
size of the data and the security of that data. In addition, depending on the
organization, you might have to consider legal and regulatory requirements,
as well as organizational policy requirements. For example, a global bank
might not be able to transfer some disk images across national borders due
to banking regulations prohibiting the transfer of client data outside the
country.

Storing images for the long term also requires some thought and plan-
ning. If an image will be reopened several years later, different staff, tools,
and infrastructure could be in place. It is important to document what has
been stored and maintain backward compatibility with the software used in
the past.

Write to Removable Media
In the past, a stack of CDs or DVDs were used in the transfer of acquired
drive images. With compression and splitting, using these media was a cheap
and feasible transfer method. Today, 4TB and 6TB disks are common, and
10TB disks are already on the consumer market. Optical discs are no longer
a practical transfer medium for today’s larger image sizes, even with com-
pression. However, for completeness, several examples are shown here.

The following simple example shows burning a SquashFS file to CD-
ROM. The mkisofs command is a symlink to genisoimage and is used to
create the filesystem to be burned to a disk with the wodim tool.
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# mkisofs -r -J maxtor-2gb-L905T60S.sfs | wodim dev=/dev/cdrom -

...

Starting to write CD/DVD at speed 48.0 in real TAO mode for single session.

...

97.45% done, estimate finish Sat Jan 16 02:36:16 2016

98.88% done, estimate finish Sat Jan 16 02:36:15 2016

...

348929 extents written (681 MB)

Track 01: Total bytes read/written: 714606592/714606592 (348929 sectors).

Here is a simple example of burning an image to a DVD. The growisofs
tool began as a frontend to genisoimage and developed into a general-
purpose DVD and Blu-ray burning tool.

# growisofs -Z /dev/dvd -R -J ibm-4gb-J30J30K5215.sfs

Executing 'genisoimage -R -J ibm-4gb-J30J30K5215.sfs | builtin_dd of=/dev/dvd

obs=32k seek=0'

...

99.58% done, estimate finish Sat Jan 16 02:30:07 2016

99.98% done, estimate finish Sat Jan 16 02:30:07 2016

1240225 extents written (2422 MB)

...

The following example shows burning an image to a Blu-ray disc using
the growisofs command:

# growisofs -allow-limited-size -Z /dev/dvd -R -J atlas-18gb.sfs

Executing 'genisoimage -allow-limited-size -R -J atlas-18gb.sfs | builtin_dd

of=/dev/dvd obs=32k seek=0'

...

This size can only be represented in the UDF filesystem.

...

/dev/dvd: pre-formatting blank BD-R for 24.8GB...

...

99.79% done, estimate finish Sat Jan 16 02:20:10 2016

99.98% done, estimate finish Sat Jan 16 02:20:10 2016

2525420 extents written (4932 MB)

...

Burning large images to optical discs under Linux can be quirky.
Depending on the drive and the media used, unexpected or inconsistent
behavior might be observed. Be sure to test the compatibility of drives and
media before using them in a production environment.
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Inexpensive Disks for Storage and Transfer
Creating a stack of optical discs from a set of split and compressed images
requires a systematic process that can be time-consuming and error prone.
The maximum capacity of Blu-ray discs is currently 100GB (BD-R XL). The
cost per gigabyte of Blu-ray discs is more than the cost per gigabyte for
cheap hard disks.

When you factor in human effort, risk of error, time required to burn
data to optical discs, and cost per gigabtye, simply buying and using cheap
hard disks becomes an attractive possibility for offline storage and transfer of
forensic images.

Perform Large Network Transfers
Some of the issues concerning acquiring images via a network were already
discussed in Chapter 6.

Large network transfers of acquired images may take long periods of
time to complete and might saturate a corporate internal network or inter-
net link. Dropped connections and timeouts might also occur during such
long network transfers.

Transferring large forensic images between hosts on a network is not
nearly as fast as transferring them between disks on a local machine. To put
network bandwidth speeds into perspective, it helpful to compare them to
common disk speeds. Table 7-1 compares two fast drive interfaces to two fast
network interfaces.

Table 7-1: Transfer Speeds of Common Interfaces

Interface Speed

NVME 4000MB/s
SATA III 600MB/s
Gigibit Ethernet 125MB/s
Fast Ethernet 12.5MB/s

For a more detailed comparison of different bandwidths, see the
Wikipedia page at https://en.wikipedia.org/wiki/List_of_device_bit_rates.

Depending on the network bandwidth and the image size, the physical
delivery of a storage container with the acquired subject image(s) could be
faster than a network transfer.

But in some situations, secure network data transfer is necessary.
Ensuring security during a transfer may have certain side effects, such as
increased complexity or performance penalties. For network data transfer
over untrusted or unknown networks, you can use several standard secure
protocols, including SSL/TLS, ssh/sftp, or IPSEC.
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The following simple example shows the transfer of a forensic image file
using scp (secure copy) from the OpenSSH software package:

$ scp image.raw server1.company.com:/data/image.raw

image.raw 11% 1955MB 37.8MB/s 06:51 ETA

...

Here, an image file (image.raw) is copied over an insecure network to
a specific data directory on a remote server. Using scp has several advan-
tages, including strong encryption algorithms, built-in compression, real-
time progress status, estimated completion time, and strong authentication
possibilities. Most important for forensic investigators, scp allows for very
large file sizes (assuming the software binary was compiled with 64-bit large
file size support) and is easily capable of transferring large disk images.

If an image file is already encrypted, the underlying security might be
less of a concern, and you can use traditional file transfer protocols, such
as File Transfer Protocol (FTP) or Windows Server Message Block (SMB).
However, when you’re using insecure and weakly authenticated protocols to
transfer encrypted files, you should confirm the file integrity by verifying the
cryptographic hash after the transfer is complete.

Secure Wiping and Data Disposal
Whenever you discard or reuse a disk, or you no longer need temporary
files, take diligent steps to properly erase the contents. Several command
line wiping and secure deletion methods are available for this purpose.

Dispose of Individual Files
In some situations, you’ll need to securely erase individual files but not the
entire disk. For example, you might need to dispose of temporary acquired
images on the acquisition host. In this scenario, using a file shredder/wiper
is sensible because it reduces the risk of destroying other data on the exam-
iner’s workstation.

The standard Linux coreutils package includes the shred tool, which
attempts to securely delete files, as shown here:

$ shred -v confidential-case-notes.txt

shred: confidential-case-notes.txt: pass 1/3 (random)...

shred: confidential-case-notes.txt: pass 2/3 (random)...

shred: confidential-case-notes.txt: pass 3/3 (random)...

A software package called the secure_deletion toolkit provides a suite of
tools that attempts to erase swap, cache, memory, inodes, and files. In partic-
ular, srm will wipe an individual file. Another command line tool called wipe
also will erase files.
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Wiping individual files is a complex process and depends on many vari-
ables related to the OS and filesystem used. There are no guarantees that all
fragments of a wiped or shredded file have been completely destroyed.

Secure Wipe a Storage Device
Wiping entire physical drives involves writing zeros or random bytes to every
user-accessible sector on the drive. This does not guarantee that all hidden
or user-inaccessible areas of a physical drive are wiped. Sectors protected by
an HPA or DCO (which can be removed), remapped bad sectors, overprovi-
sioned areas of flash drives, and inaccessible system areas of a drive are not
user accessible and therefore cannot be wiped with normal Linux tools. In
spite of this, wiping all user-accessible sectors still provides a reasonable level
of assurance, so this is a diligent method of data disposal for reusing drives
within a lab.

Depending on a particular organization’s risk appetite and policies, data
disposal might require one or more of the following:

• No wiping at all, just common reformatting

• Wiping all visible sectors with one pass of zeros

• Wiping all visible sectors with multiple passes of random data

• Physically degaussing drives

• Physically shredding drives

The disposal method required is a risk-based decision that depends on
the sensitivity of the data on the drive, who might have an interest in recov-
ering the data, cost and effort for recovery, and other factors.

This first example uses dc3dd to write zeros to each visible sector on the
disk. The dc3dd tool has built-in wiping functionality, and you can use it as
follows:

# dc3dd wipe=/dev/sdi

dc3dd 7.2.641 started at 2016-01-16 00:03:16 +0100

compiled options:

command line: dc3dd wipe=/dev/sdi

device size: 29305206 sectors (probed), 120,034,123,776 bytes

sector size: 4096 bytes (probed)

120034123776 bytes ( 112 G ) copied ( 100% ), 3619 s, 32 M/s

input results for pattern `00':

29305206 sectors in

output results for device `/dev/sdi':

29305206 sectors out

dc3dd completed at 2016-01-16 01:03:35 +0100
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You could also complete this task using dd with /dev/zero as the input
file, but dc3dd is faster.

To confirm the disk has been wiped with zeros, you can use dd to read
the disk into a hexdump program:

# dd if=/dev/sda | hd

If the entire disk is full of zeros, the hexdump (hd) tool will display one
line of zeros followed by an asterisk (*), indicating a repeated pattern across
the entire disk.

0000000 000000 000000 000000 000000 000000 000000 000000 000000

*

If the result shows only zeros, the user-accessible sectors of the drive
have been successfully wiped.

The following example uses the nwipe tool, a fork of Darik’s Boot and
Nuke (dban) tool. The nwipe tool can specify different wiping standards,
randomicity, and number of rounds, and it will provide a log file of the activ-
ity. The Canadian RCMP TSSIT OPS-II wipe version is shown here:3

# nwipe --autonuke --nogui --method=ops2 /dev/sdj

[2016/01/15 23:14:56] nwipe: notice: Opened entropy source '/dev/urandom'.

[2016/01/15 23:14:56] nwipe: info: Device '/dev/sdj' has sector size 512.

[2016/01/15 23:14:56] nwipe: warning: Changing '/dev/sdj' block size from 4096 to

512.

[2016/01/15 23:14:56] nwipe: info: Device '/dev/sdj' is size 160041885696.

[2016/01/15 23:14:56] nwipe: notice: Invoking method 'RCMP TSSIT OPS-II' on device

'/dev/sdj'.

[2016/01/15 23:14:56] nwipe: notice: Starting round 1 of 1 on device '/dev/sdj'.

[2016/01/15 23:14:56] nwipe: notice: Starting pass 1 of 8, round 1 of 1, on device

'/dev/sdj'.

[2016/01/15 23:57:00] nwipe: notice: 160041885696 bytes written to device

'/dev/sdj'.

[2016/01/15 23:57:00] nwipe: notice: Finished pass 1 of 8, round 1 of 1, on device

'/dev/sdj'.

...

When you’re wiping drives, ensure the DCO and HPA have been
removed. With NVME drives, make sure each individual namespace has
been wiped (most consumer NVME drives have only a single namespace).

Issue ATA Security Erase Unit Commands
The ATA standard specifies a security erase command that you can issue
directly to a drive to wipe a disk. The ATA SECURITY ERASE UNIT command will

3. I am Canadian; hence the favoritism for the RCMP method. :-)
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write zeros to all user accessible sectors of the disk. The EXTENDED SECURITY ERASE

command will write a predefined pattern (defined by the drive manufac-
turer) instead of zeros.

Running hdparm displays the capabilities and status of security on the
drive. Also provided is the estimated time needed to securely erase the drive,
as shown here:

# hdparm -I /dev/sdh

...

device size with M = 1000*1000: 500107 MBytes (500 GB)

...

Security:

Master password revision code = 7

supported

enabled

not locked

not frozen

not expired: security count

supported: enhanced erase

Security level high

60min for SECURITY ERASE UNIT. 60min for ENHANCED SECURITY ERASE UNIT.

Some drives will reject the erase command if you don’t explicitly set a
password first. In the following example, a Western Digital drive was used,
and the password was first set to dummy before the --security-erase com-
mand was accepted:

# hdparm --security-erase dummy /dev/sdh

security_password="dummy"

/dev/sdh:

Issuing SECURITY_ERASE command, password="dummy", user=user

The drive has now been securely wiped and can be reused. If a drive
requires setting a password, don’t forget to disable the password after the
security erase has completed.

Destroy Encrypted Disk Keys
You can securely destroy encrypted disks and filesystems by destroying all
known copies of the encryption key. If the key was generated on a secure
device such as a smartcard, a TPM, or an Opal drive, then only one copy of
the key will exist. If a drive or filesystem was provisioned in an enterprise
environment, there might be backup or escrow copies of the key for recov-
ery purposes.

Key-wiping procedures for OS-based encrypted drives, such as Microsoft
BitLocker, Apple FileVault, Linux LUKS/dm-crypt, or TrueCrypt variants,
require detailed knowledge of where the keys are stored. Keys might be

Forensic Image Management 227



password/passphrase protected and stored in a file or in a certain block
on the drive. They might also be stored in a key file elsewhere. If it’s not
possible to locate and securely destroy all copies of a private key, the alter-
native is to wipe the disk with the full drive-wiping method described in a
previous section.

Typically, secure external USB thumb drives have a factory reset func-
tion for lost passwords. This can be used to destroy the key and hence the
contents of the drive. For example, you can reset the Corsair Padlock2
thumb drive by holding down both the KEY and 0/1 buttons for three sec-
onds, followed by entering 911 to reset the key and destroy the drive con-
tents. On iStorage datashur drives, hold down both the KEY and 2 buttons
for three seconds and then enter 999 to reset the key.

Destroying the contents of Opal SED drives is also instantaneous and
simply involves destroying the encryption key on the drive by entering the
Physical Security ID (PSID). The PSID usually has a QR code on the physical
cover of the drive that you can scan instead of typing it in by hand. You can-
not get the PSID by querying the drive with ATA commands; it’s only visible
on the cover of the physical drive.

The sedutil-cli command has a special option for irrevocably resetting
the drive key using the PSID:

# time sedutil-cli --yesIreallywanttoERASEALLmydatausingthePSID

3HTEWZB0TVOLH2MZU8F7LCFD28U7GJPG /dev/sdi

- 22:21:13.738 INFO: revertTper completed successfully

real 0m0.541s

user 0m0.000s

sys 0m0.000s

The encryption key in the drive is now reset, and the data is effectively
destroyed. The disk is factory reset, unlocked, and can be reused. The time
needed to destroy the data on this 120GB drive was half a second.

Closing Thoughts
In this chapter, you learned a variety of techniques for managing forensic
images, including the use of compression with common Linux tools and
built-in compression with forensic formats. You saw more examples of the
SquashFS compressed filesystem and the sfsimage script for managing foren-
sic evidence containers. I demonstrated splitting and reassembling images,
duplicating drives, and converting between image formats. You also learned
how to verify hashes, signatures, and timestamps and how to protect images
with encryption during network transfer and storage. Finally, I showed the
secure disposal of forensic image files and drives.
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8
SPECIAL IMAGE ACCESS TOPICS

This chapter demonstrates techniques for
getting information about disk image files

and making them accessible as block devices
and as mounted directories. You’ll learn to set

up loop devices and create logical devices with device
mapper tools. You’ll also explore methods to map or
convert software-encrypted disk images, making them
accessible by forensic tools. These methods are useful in situations in which
the contents of an image cannot be accessed directly and a layer of active
translation or decryption is needed. Examples of such images include
encrypted filesystems, virtual machine (VM) images, and other image file
formats that forensic tools do not directly support.

Each section also includes examples of safely mounting (read-only)
image files as regular filesystems on the forensic acquisition host. Then you
can easily browse and access the filesystem using common programs, such as
file managers, office suites, file viewers, media players, and so on.



Forensically Acquired Image Files
The basis for many of the methods and examples you’ll see in this section is
the Linux loop device (not to be confused with a loopback device, which is
a network interface). A loop device is a pseudo device that can be associated
with a regular file, making the file accessible as a block device in /dev.

Linux systems typically create eight loop devices by default, which might
not be enough for a forensic acquisition host, but you can increase that
number, either manually or automatically, on boot up. To create 32 loop
devices during boot up, add max_loop=32 to the GRUB_CMDLINE_LINUX_DEFAULT=

line in the /etc/default/grub file; after reboot, 32 unused loop devices should
be available. The sfsimage script uses loop devices to mount SquashFS foren-
sic evidence containers.

This chapter will cover different VM images from common VM systems
from QEMU, VirtualBox, VMWare, and Microsoft Virtual PC. I also describe
access to OS-encrypted filesystems, including Microsoft’s BitLocker, Apple’s
FileVault, Linux LUKS, and VeraCrypt (a fork of TrueCrypt). But let’s begin
the with the simplest form of image: a raw disk image acquired using a dd-
style acquisition tool.

Raw Image Files with Loop Devices
The simplest demonstration of a loop device can be shown using a raw
image file (possibly acquired from a simple dd command). The losetup com-
mand attaches and detaches loop devices from a Linux system. This example
creates a block device for an image.raw file:

# losetup --read-only --find --show image.raw

/dev/loop0

Here, the flags specify that the loop should be read-only (--read-only)
and the next available loop device should be used (--find) and displayed on
completion (--show). The filename specified (image.raw) will then become
available as an attached block device.

Running the losetup command without parameters displays the status of
all configured loop devices. Here we can see the one just created:

# losetup

NAME SIZELIMIT OFFSET AUTOCLEAR RO BACK-FILE

/dev/loop0 0 0 0 1 /exam/image.raw

The /dev/loop0 device now points to /exam/image.raw, and you can access
it with any tools that operate on block devices. For example, here the Sleuth
Kit mmls command is able to see the partition table on the image.raw file
using the loop device:

# mmls /dev/loop0

DOS Partition Table
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Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000002047 0000002048 Unallocated

02: 00:00 0000002048 0058597375 0058595328 Linux (0x83)

03: 00:01 0058597376 0078129151 0019531776 Linux Swap / Solaris x86 (0x82)

04: 00:02 0078129152 0078231551 0000102400 NTFS (0x07)

05: 00:03 0078231552 0234441647 0156210096 Mac OS X HFS (0xaf)

When you no longer need a loop device, simply detach it as follows:

# losetup --detach /dev/loop0

Loop devices are flexible and configurable. In the previous mmls
example, a filesystem starts at sector 2048. It’s possible to specify an offset
each time you run a forensic tool, but it’s easier to have a separate device
for each partition (similar to /dev/sda1 for example). You can create a sepa-
rate loop device with the losetup command just for that partition by specify-
ing the correct offset flag (--offset) and size flag (--sizelimit). However, a
more commonly accepted way is to use the device mapper.

You could do this manually using dmsetup and mapping tables as
described in “RAID and Multidisk Systems” on page 178. However, the
kpartx tool automates the creation of partition devices for a particular
image file. A forensically acquired image with four partitions is used in the
following example to demonstrate the kpartx tool making mapper devices
for each partition:

# kpartx -r -a -v image.raw

add map loop0p1 (252:0): 0 58595328 linear /dev/loop0 2048

add map loop0p2 (252:1): 0 19531776 linear /dev/loop0 58597376

add map loop0p3 (252:2): 0 102400 linear /dev/loop0 78129152

add map loop0p4 (252:3): 0 156210096 linear /dev/loop0 78231552

Here, the kpartx tool reads the partition table on a disk or image file,
creates a loop device for the whole image, and then creates mapper devices
for each partition. The -r flag ensures the drive loop and partition map-
pings are read-only, and the -a flag instructs kpartx to map everything it
finds. Use the verbose flag -v to document the command output and to
indicate what was just mapped.

In this example, a loop device is created (/dev/loop0) for the whole
image file and is accessible as a raw block device. In addition, partition
devices are now available in the /dev/mapper directory, and you can access
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them using forensic tools that operate on partitions, without specifying
any offsets. Here are a few example Sleuth Kit commands for some of the
partitions:

# fsstat /dev/mapper/loop0p1

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: Ext4

Volume Name:

Volume ID: d4605b95ec13fcb43646de38f7f49680

...

# fls /dev/mapper/loop0p3

r/r 4-128-1: $AttrDef

r/r 8-128-2: $BadClus

r/r 8-128-1: $BadClus:$Bad

r/r 6-128-1: $Bitmap

r/r 7-128-1: $Boot

d/d 11-144-2: $Extend

r/r 2-128-1: $LogFile

r/r 0-128-1: $MFT

...

# fsstat /dev/mapper/loop0p4

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: HFS+

File System Version: HFS+

...

A filesystem mapped to a device from an image file can be safely
mounted as read-only. This will allow you access it with a standard file
manager, applications, and other file-analysis tools. You can mount and
unmount loop partitions, as shown in this example:

# mkdir p3

# mount --read-only /dev/mapper/loop0p3 p3

# mc ./p3

...

# umount p3

# rmdir p3

Here, a directory, p3, representing the partition was created in the same
directory as the raw image. Then p3 was used as the mount point (the cho-
sen mount point can be anywhere on the examiner host filesystem). Mid-
night Commander (mc) is a text-based file manager (a Norton Commander
clone) and is used in this example to review the files on the mounted parti-
tion. When the mount point is no longer needed, the umount command (this

232 Chapter 8



command is spelled correctly with only one n) unmounts the filesystem, and
rmdir removes the mount point directory. This is the traditional Unix way to
mount and unmount a filesystem on a host system.

When you no longer need the drive loop and partition mappings, you
can remove them all by using the kpartx delete (-d) flag and the name of the
image file, like this:

# kpartx -d image.raw

loop deleted : /dev/loop0

Note that this “delete” has no effect on the disk image’s contents. The
loop and mappings are deleted, not the drive image, and the drive image is
not modified.

If a raw image has a corrupt or overwritten partition table, you can scan
the image for filesystems and use dmsetup to manually map filesystems as
devices (using dmsetup tables).

When you create, mount, unmount, or detach a loop device, root priv-
ileges are required. They’re also required for operating on the /dev/loopX
device with forensic tools. The examples shown in this section were run as
the root user to reduce the complexity of the command lines, making them
easier to understand. Prefixing the commands with sudo can be used to run
privileged commands as a non-root user.

Forensic Format Image Files
The ewflib software package includes a tool called ewfmount to “mount” the
contents of a forensic image, making it accessible as a regular raw image file.

The following example shows a group of *.e01 files. A mount point, raw
in this example, is created with mkdir and will contain the raw image file:

# ls

image.E01 image.E02 image.E03 image.E04 image.E05

# mkdir raw

The ewfmount tool creates a FUSE filesystem containing a virtual raw
image from one or more EWF files. You can run ewfmount command with the
first of the EnCase EWF files and the mount point to access a raw image file
like this:

# ewfmount image.E01 raw

ewfmount 20160424

# ls -l raw

total 0

-r--r--r-- 1 root root 16001269760 May 17 21:20 ewf1
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You can then operate on this virtual raw image file using tools that don’t
support EWF formats directly. In the following example, a hex editor (with-
out EWF support) is used in sector mode to analyze the raw image:

# hexedit -s raw/ewf1

...

The kpartx tool is again useful to identify partitions and create corre-
sponding loop devices, enabling the use of tools that can operate on block
devices and allowing the mounting of the filesystems for regular browsing.
The kpartx output of the *.e01 files mounted with ewfmount is shown here:

# kpartx -r -a -v raw/ewf1

add map loop0p1 (252:0): 0 29848707 linear /dev/loop0 63

add map loop0p2 (252:1): 0 2 linear /dev/loop0 29848770

add map loop0p5 : 0 1397592 linear /dev/loop0 29848833

Let’s continue using this example to create a mount point for a partition
and mount and access a filesystem:

# mkdir p1

# mount --read-only /dev/mapper/loop0p1 p1

# ls p1

cdrom home/ lib32/ media/ proc/ selinux/ tmp/ vmlinuz

bin/ dev/ initrd.img lib64 mnt/ root/ srv/ usr/

boot/ etc/ lib/ lost+found/ opt/ sbin/ sys/ var/

...

In this example, a mount point corresponding to the partition is created
in the local directory, the partition device is mounted on it, and the file-
system is accessed with ls. If possible, avoid the use of /mnt or other shared
mount directories when mounting evidence files and containers. It is easier
to perform forensic work when the mount points for an image are in the
same working directory as other related case files.

As before, when the work is completed, you need to clean up the
mounts and virtual files. Again, this is done in the reverse order:

# umount p1

# kpartx -d raw/ewf1

loop deleted : /dev/loop0

# fusermount -u raw

# rmdir p1 raw

The fusermount command is shown in this example, but the standard
Linux umount command would also work. Make sure your current working
directory is not inside the mount point and that no programs have open
files inside the mount points. Both conditions will cause these cleanup steps
to fail.
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When using SquashFS forensic evidence containers, you can access the
raw image by mounting the *.sfs file with sfsimage -m, creating the partition
devices, and then mounting the desired partition. You can then execute
regular commands on the subject image’s filesystem. A complete example
is shown here:

# sfsimage -m image.sfs

image.sfs.d mount created

# kpartx -r -a -v image.sfs.d/image.raw

add map loop1p1 (252:0): 0 29848707 linear /dev/loop1 63

add map loop1p2 (252:1): 0 2 linear /dev/loop1 29848770

add map loop1p5 : 0 1397592 linear /dev/loop1 29848833

# mkdir p1

# mount /dev/mapper/loop1p1 p1

mount: /dev/mapper/loop1p1 is write-protected, mounting read-only

# ls -l

...

Once you are finished accessing the raw image and its filesystems,
clean up with SquashFS forensic evidence containers is also done in reverse.
The sfsimage -u command unmounts a SquashFS filesytem as shown in this
example:

# umount p1

# kpartx -d image.sfs.d/image.raw

loop deleted : /dev/loop1

# sfsimage -u image.sfs.d/

image.sfs.d unmounted

This section has demonstrated several methods for accessing the con-
tents of forensic formats, both as block devices and as regular filesystems.
The ewfmount tool also works with FTK SMART files. Afflib has a similar
tool called affuse for mounting *.aff files. Both ewfmount and affuse can
operate on single or split files of their respective formats.

Note that many forensic tools (Sleuth Kit, for example) are able to oper-
ate directly on forensic formats without the need for a raw block device or
raw file.

Prepare Boot Images with xmount
Forensic investigators often want to examine a subject drive image with non-
forensic tools, such file managers, office suites, applications, or other file
viewer tools. This can be done by making the drive contents safely available
over a read-only mount for the local examiner machine to access.

In some cases, it is useful to boot a subject drive in a VM to observe and
interact directly with the live subject environment. This allows you to view
the subject’s desktop and use the installed programs of the subject PC. To
do this, you can use a number of tools described in this section.
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The xmount (pronounced “crossmount”) tool creates a virtual disk
image that you can boot using VM software, such as VirtualBox or kvm-
qemu. The xmount tool allows you to simulate a read-write drive, making
the VM think the disk is writable, but it continues to protect the image in
a read-only state. Multiple VM output formats are available, including raw,
DMG, VDI, VHD, VMDK, and VMDKS.

The input formats include forensically acquired image files, such as
*.raw, EnCase *.ewf, and AFFlib *.aff files.

Here is an example of a raw image (image.raw) set up with xmount as a
VirtualBox *.vdi file:

$ mkdir virtual

$ xmount --cache xmount.cache --in raw image.raw --out vdi virtual

$ ls virtual/

image.info image.vdi

$ cat virtual/image.info

------> The following values are supplied by the used input library(ies) <------

--> image.raw <--

RAW image assembled of 1 piece(s)

30016659456 bytes in total (27.955 GiB)

------> The following values are supplied by the used morphing library <------

None

$ virtualbox

In this example, the directory virtual is created to hold the virtual image
file (it will be FUSE mounted). From an existing image.raw file, the xmount

command creates a write-cached VirtualBox VDI image in the ./virtual direc-
tory. This is just a virtual representation of the image file; it is not copied or
converted (thus not wasting disk space on the examiner machine). The --in

and --out flags specify the image format used. The input formats must be
raw, AFF, or EWF. Multiple output formats are possible.

Booting an OS image in a VM can be challenging when the installed OS
is expecting a different hardware configuration than provided by the VM.
Typically, this is less of an issue with Linux installations but can be problem-
atic with Windows and OS X. To solve this problem, two tools, opengates
and openjobs, were created to prepare Windows and OS X images for safely
booting subject disks in a virtual environment. I won’t cover how to use
opengates and openjobs, but you can find more information about them
at https://www.pinguin.lu/openjobs/ and https://www.pinguin.lu/opengates/ .

When you no longer need the VM image, you can clean up by unmount-
ing the virtual image and removing the mount point directory:

$ fusermount -u virtual

$ ls virtual/

$ rmdir virtual
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A xmount.cache file containing data written during the use of the VM
might exist. You can save the file if you need to continue the previous VM
session, or you can remove it.

VM Images
With the increasing performance of home computers, hardware virtualiza-
tion in most modern CPUs, and the availability of inexpensive or free virtu-
alization software, there is an increased need to analyze the contents of VM
images. In some cases, you might find many VM images on subject PCs. This
section focuses on accessing common VM image file types such as QCOW2,
VDI, VMDK, and VHD.

QEMU QCOW2
The QCOW2 format is a common VM image type found on Linux and used
by the QEMU emulator. In this section, I’ll make a QCOW2 image available
as a block device and safely mount it for browsing.

The libqcow-utils package (written by Joachim Metz, author of ewflib)
contains the qcowinfo and qcowmount tools. You can use both tools in the
same way as you used the ewfinfo and ewfmount tools in previous examples.
But the following example shows an alternative method using the qemu-img

command, the nbd kernel module, and the qemu-nbd tool. This method
offers performance advantages because it operates in the kernel and saves
you a few steps because you don’t need to use kpartx.

Given a *.qcow2 file, the qemu-img command can provide a summary of
the file:

# qemu-img info image.qcow2

image: image.qcow2

file format: qcow2

virtual size: 5.0G (5368709120 bytes)

disk size: 141M

cluster_size: 65536

Format specific information:

compat: 1.1

lazy refcounts: false

refcount bits: 16

corrupt: false

To access a QCOW image in a raw image representation with nbd, you
need to load the nbd kernel module:

# modprobe nbd

# dmesg | grep nbd

[16771.003241] nbd: registered device at major 43

Special Image Access Topics 237



Unlike with the losetup command, the device is not automatically cho-
sen. A /dev/nbd* device needs to be specified as follows:

# qemu-nbd --read-only --connect /dev/nbd0 image.qcow2

# dmesg | grep nbd0

[16997.777839] nbd0: p1

Here, the QCOW2 image file was connected to the kernel module in
read-only mode, and the partition device was automatically detected. You
can use this raw device with forensic tools, as shown in this example:

# mmls /dev/nbd0

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000002047 0000002048 Unallocated

02: 00:00 0000002048 0010485759 0010483712 Linux (0x83)

The partition devices (the raw device name with p1 in this example) are
also ready for you to use directly with forensic tools. To illustrate, here’s the
fls command operating directly on a filesystem on the partition device:

# fls /dev/nbd0p1

d/d 11: lost+found

r/r 12: hosts

d/d 327681: $OrphanFiles

...

Mounting the devices locally for browsing is trivial. A local mount point
directory is created, and the filesystem is mounted normally, as follows:

# mkdir p1

# mount /dev/nbd0p1 p1

mount: /dev/nbd0p1 is write-protected, mounting read-only

# ls p1

hosts lost+found/

The cleanup here is similar to the examples using loop devices, but
with fewer steps. All processes should close files, and you should leave the
mounted directory so it can be unmounted. A qemu-nbd disconnect com-
mand specifying the device name will unregister the device from the kernel,
like so:

# umount p1

# qemu-nbd --read-only --disconnect /dev/nbd0
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/dev/nbd0 disconnected

# rmdir p1

An optional step is to remove the kernel module using rmmod nbd.
But there is no harm in leaving it in if you’ll be doing more QCOW
mounts. You can also autoload the nbd module at boot by adding it to
the /etc/modules file.

VirtualBox VDI
VirtualBox is an open source project maintained by Oracle (formerly Sun
Microsystems). Although it supports multiple VM image formats, VirtualBox
VDI images are used in the examples that follow. The same qemu-nbd com-
mand is used as before but with an OpenSolaris image.

The VirtualBox software package includes a number of utilities; the
VBoxManage tool is shown here, providing information about the VDI
image:

# VBoxManage showhdinfo OpenSolaris.vdi

UUID: 0e2e2466-afd7-49ba-8fe8-35d73d187704

Parent UUID: base

State: created

Type: normal (base)

Location: /exam/OpenSolaris.vdi

Storage format: VDI

Format variant: dynamic default

Capacity: 16384 MBytes

Size on disk: 2803 MBytes

Encryption: disabled

You can mount VirtualBox images using qemu-nbd and the nbd kernel
module (as you saw in the previous section using QCOW2). The Open-
Solaris example shown here is slightly different from the partitioning
scheme Windows and Linux use. Multiple disk slices1 are also shown:

# qemu-nbd -c /dev/nbd0 OpenSolaris.vdi

# dmesg

...

[19646.708351] nbd0: p1

p1: <solaris: [s0] p5 [s1] p6 [s2] p7 [s8] p8 >

In this example, a single Solaris partition (p1) contains multiple slices
(p5, p6, p7, and p8).

You can use the same methods as in the previous QEMU example
to access the raw and partition devices, then mount the partitions as

1. The term slices originates from BSD UNIX, and it’s a common partitioning scheme in the
UNIX world.
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read-only to a local mount point. Here again, you don’t need to use kpartx
to find the partitions, because the kernel does it automatically. Once you are
finished accessing the partitions (or slices, here), perform the cleanup steps
to unmount filesystems and disconnect the nbd device.

VMWare VMDK
The Virtual Machine DisK (VMDK) format is used by VMWare’s VM software
products. The following example uses the libvmdk-utils software package on
an Apple Lion VMDK image split into multiple parts:

# ls

lion-000001-s001.vmdk lion-000003-s007.vmdk lion-s009.vmdk

lion-000001-s002.vmdk lion-000003-s008.vmdk lion-s010.vmdk

lion-000001-s003.vmdk lion-000003-s009.vmdk lion-s011.vmdk

lion-000001-s004.vmdk lion-000003-s010.vmdk lion-s012.vmdk

lion-000001-s005.vmdk lion-000003-s011.vmdk lion-s013.vmdk

lion-000001-s006.vmdk lion-000003-s012.vmdk lion-s014.vmdk

lion-000001-s007.vmdk lion-000003-s013.vmdk lion-s015.vmdk

lion-000001-s008.vmdk lion-000003-s014.vmdk lion-s016.vmdk

...

You can retrieve information about the assembled image and each of
the “Extents” using vmdkinfo:

# vmdkinfo lion.vmdk

vmdkinfo 20160119

VMware Virtual Disk (VMDK) information:

Disk type: 2GB extent sparse

Media size: 42949672960 bytes

Content identifier: 0xadba0513

Parent content identifier: 0xffffffff

Number of extents: 21

Extent: 1

Filename: lion-s001.vmdk

Type: Sparse

Start offset: 0

Size: 2146435072 bytes

...

Creating a mount point and mounting the image makes it accessible as a
raw image file:

# mkdir lion

# vmdkmount lion.vmdk lion

vmdkmount 20160119
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# ls -ls lion

total 0

0 -r--r--r-- 1 root root 42949672960 May 17 22:24 vmdk1

# mmls lion/vmdk1

GUID Partition Table (EFI)

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Safety Table

01: ----- 0000000000 0000000039 0000000040 Unallocated

02: Meta 0000000001 0000000001 0000000001 GPT Header

03: Meta 0000000002 0000000033 0000000032 Partition Table

04: 00 0000000040 0000409639 0000409600 EFI System Partition

05: 01 0000409640 0082616503 0082206864 Untitled

06: 02 0082616504 0083886039 0001269536 Recovery HD

07: ----- 0083886040 0083886079 0000000040 Unallocated

Using kpartx, as shown earlier in the chapter, will create the associated
disk and partition block devices. You can then use forensic analysis tools on
them directly or mount them on the local machine to browse the filesystem.

Microsoft VHD
A number of methods help you make the Microsoft VHD virtual image for-
mat accessible. For example, you can use the qemu-nbd method or use the
libvhdi-utils with vhdiinfo and vhdimount.

A third method is available using the blktap-utils with the Xen blktap
xapi interface. Similar to the nbd method, the blktap requires you to insert a
kernel module and manually allocate a device. A tapdisk process is spawned,
attached to the driver, and instructed to open a disk image. The manual
pages for blktap-utils aren’t very useful, but you can find a description on
the Xen website at http://wiki.xen.org/wiki/Mounting_a_.vhd_disk_image_
using_blktap/tapdisk and at http://lists.xen.org/archives/html/xen-api/2012-05/
msg00149.html .

To complete this section, I’ll repeat the process for setting up devices
using the libvhdi tools. For simplicity, the previous examples used the priv-
ileged root user. But the following examples demonstrate a nonprivileged
user authorized to use sudo.

To run the FUSE mount and unmount commands as a nonprivileged user,
you need to set user_allow_other in /etc/fuse.conf.

You can find information about the image using vhdiinfo, and no special
privileges are required:

$ vhdiinfo windows.vhd

vhdiinfo 20160111
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Virtual Hard Disk (VHD) image information:

Format: 1.0

Disk type: Dynamic

Media size: 136365211648 bytes

Identifier: c9f106a3-cf3f-6b42-a13f-60e349faccb5

You can FUSE mount the image without root privileges, but you need
to explicitly instruct the vhdimount command to allow the root user access by
adding the -X allow_root flag. This flag is also needed to allow root to per-
form further actions through sudo (like creating block devices with kpartx):

$ mkdir raw

$ vhdimount -X allow_root windows.vhd raw

vhdimount 20160111

$ ls -l raw/

total 0

-r--r--r-- 1 holmes holmes 136365211648 Jan 20 08:14 vhdi1

The raw image is now available in the ./raw directory, and you can access
it with standard tools. To create loop and mapper devices, run kpartx with
the sudo command. Once the devices are created, you can access them with
tools via the sudo command. The sudo command is required for all block
device access. Examples with kpartx and fls are shown here:

$ sudo kpartx -r -a -v ./raw/vhdi1

add map loop0p1 (252:0): 0 266334018 linear /dev/loop0 63

$ sudo fls /dev/mapper/loop0p1

r/r 4-128-4: $AttrDef

r/r 8-128-2: $BadClus

r/r 8-128-1: $BadClus:$Bad

r/r 6-128-1: $Bitmap

r/r 7-128-1: $Boot

d/d 11-144-4: $Extend

r/r 2-128-1: $LogFile

r/r 0-128-1: $MFT

Mounting the filesystem also requires sudo, and explicitly specifying -o ro

mounts it as read-only. An example of creating a mount point, mounting the
filesystem from the previous example, and accessing it with ls is shown here:

$ mkdir p1

$ sudo mount -o ro /dev/mapper/loop0p1 p1

$ ls p1

AUTOEXEC.BAT IO.SYS $RECYCLE.BIN/

...
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The cleanup of this session requires sudo for unmounting the raw image
and removing the loop and mapper devices. You can remove the FUSE
mount of the *.vhd file without root privileges. These steps are shown here:

$ sudo umount p1

$ sudo kpartx -d raw/vhdi1

loop deleted : /dev/loop0

$ fusermount -u raw

You configure the sudo command by editing the /etc/sudoers file. Many
of the examples in this book use the root user for simplicity’s sake to reduce
the number of commands on an already complex command line. It’s good
practice to work as a nonprivileged user with security mechanisms such
as sudo.

OS-Encrypted Filesystems
Now let’s look at accessing popular encrypted filesystems. The focus is not
on key recovery (although I do provide a couple of suggestions) but on
accessing the filesystems with a known key. It’s assumed the keys or pass-
words are available from memory dumps, escrow/backup in enterprise orga-
nizations, individuals legally compelled to provide them, victims offering to
help, commercial recovery services/software, or other sources.

You can determine the type of filesystem encryption with various
partition-analysis tools that can identify headers, magic numbers, and
other artifacts unique to a particular encrypted filesystem type. You’ll
find an overview of identifying filesystem encryption in a forensic context
at http://encase-forensic-blog.guidancesoftware.com/2014/04/version-7-tech-tip
-spotting-full-disk.html.

In this section, you’ll find the information about a particular encrypted
image needed to create an unencrypted block device or file that you can
access using forensic tools or safely mount for local browsing.

Microsoft BitLocker
Microsoft’s current default filesystem encryption is BitLocker. It encrypts at
the block level, protecting entire volumes. A variant of BitLocker designed
for removable media is called BitLocker-To-Go, which uses encrypted con-
tainer files on a regular unencrypted filesystem. Two open source tools,
dislocker and libbde, are shown in the examples in this section.

Written by Romain Coltel, you’ll find the dislocker package at https://
github.com/Aorimn/dislocker/ . It provides various tools for handling BitLocker
volumes, including viewing metadata, creating decrypted image files, and
FUSE mounting volumes.
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The dislocker-find tool scans all attached partition devices and speci-
fied files to identify the existence of any BitLocker volumes. Scanning for
BitLocker devices might not be necessary if the subject device was already
identified during the process of attaching it to the acquisition host.

The dislocker-metadata command provides an overview of a BitLocker
drive. The next example is an image taken from a USB thumb drive. The
entire drive is encrypted, and it doesn’t have a partition table. The image
file can be queried as follows:

# dislocker-metadata -V bitlocker-image.raw

...

Wed Jan 20 13:46:06 2016 [INFO] BitLocker metadata found and parsed.

Wed Jan 20 13:46:06 2016 [INFO] =====[ Volume header informations ]=====

Wed Jan 20 13:46:06 2016 [INFO] Signature: 'MSWIN4.1'

Wed Jan 20 13:46:06 2016 [INFO] Sector size: 0x0200 (512) bytes

...

Wed Jan 20 13:46:06 2016 [INFO] Number of sectors (64 bits): 0x0000000200000000

(8589934592) bytes

Wed Jan 20 13:46:06 2016 [INFO] MFT start cluster: 0x0000000000060001 (393217)

bytes

...

Wed Jan 20 13:46:06 2016 [INFO] =====================[ BitLocker information

structure ]=====================

Wed Jan 20 13:46:06 2016 [INFO] Signature: '-FVE-FS-'

Wed Jan 20 13:46:06 2016 [INFO] Total Size: 0x02f0 (752) bytes (including

signature and data)

Wed Jan 20 13:46:06 2016 [INFO] Version: 2

Wed Jan 20 13:46:06 2016 [INFO] Current state: ENCRYPTED (4)

Wed Jan 20 13:46:06 2016 [INFO] Next state: ENCRYPTED (4)

Wed Jan 20 13:46:06 2016 [INFO] Encrypted volume size: 7918845952 bytes

(0x1d8000000), ~7552 MB

...

The output of this command provides a lot of detailed cryptographic
information not shown here. You can save the output of dislocker-metadata
to a text file for documentation purposes. This command can also operate
directly on attached devices.

As in previous password and encryption examples, it’s assumed that
you have the key. Some commercial tools are available to attempt password
brute force to recover the key. In addition, you can use a volatility plug-in to
extract the FVEK from a memory image (https://github.com/elceef/bitlocker/),
and you could use this tool in conjunction with the inception memory-
dumping tool. The use of these tools is not covered here.

You can create a virtual file or block device to operate on a decrypted
view of the disk image “in place.” The process to do so is similar to the
examples in “VM Images” on page 237. The dislocker software package
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provides a tool to create a FUSE filesystem with virtual representation of the
decrypted volume:

# mkdir clear

# dislocker-fuse -u -V bitlocker-image.raw clear

Enter the user password:

# ls -l clear/

total 0

-rw-rw-rw- 1 root root 7918845952 Jan 1 1970 dislocker-file

...

The file that appears in the clear directory is a decrypted representation
of the encrypted filesystem, and you can operate on it using regular forensic
tools. An example using Sleuth Kit’s fsstat is shown here:

# fsstat clear/dislocker-file

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: FAT32

OEM Name: MSDOS5.0

Volume ID: 0x5a08a5ba

Volume Label (Boot Sector): NO NAME

Volume Label (Root Directory): MY SECRETS

File System Type Label: FAT32

Next Free Sector (FS Info): 34304

Free Sector Count (FS Info): 15418664

...

You can safely mount the decrypted filesystem image for normal brows-
ing. The mount command has a loop option, which allows a partition image
file to be directly mounted, as shown here:

# mkdir files

# mount -o loop,ro clear/dislocker-file files

# ls files

Penguins.jpg private/ System Volume Information/

...

The cleanup in this example is a simple matter of unmounting the
files’ mount point, removing the FUSE mount, and deleting the mount
directories:

# umount files

# rmdir files

# fusermount -u clear

# rmdir clear
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Note that the preceding examples were done with root privileges to
reduce complexity and make them easier to understand. You can perform
the same commands as a nonprivileged user, as shown here:

$ dislocker-metadata -V bitlocker-image.raw

$ mkdir clear files

$ dislocker-fuse -u -V bitlocker-image.raw -- -o allow_root clear

$ sudo mount -o loop,ro,uid=holmes clear/dislocker-file files

...

$ sudo umount files

$ fusermount -u clear

$ rmdir clear files

Here dislocker-fuse passes -o allow_root to the FUSE driver, allowing sudo

to be used for mounting and unmounting. The uid=holmes ensures that Mr.
Holmes can access the mounted files without root privileges. It’s assumed
that Mr. Holmes is a member of the FUSE Unix group, and the /etc/fuse.conf
file contains the line user_allow_other.

Using dislocker, you can provide three possible credentials to unlock
a BitLocker container. A -u flag (used in the previous example) specifies
that the user’s password be requested. A -p flag provides a recovery password
(48 digits long). And an -f flag specifies a key file (BEK file).

Using a recovery password (-p) instead of a user password (-u) requires
manually keying in the 48-digit recovery password, as follows:

# dislocker-fuse -p -V bitlocker-image.raw clear

Enter the recovery password: XXXXXX-XXXXXX-XXXXXX-XXXXXX-XXXXXX-XXXXXX-XXXXXX-XXXXXX

Valid password format, continuing.

The non-root version of this command passes flags to FUSE, which
allows for mounting with sudo:

$ dislocker-fuse -p -V bitlocker-image.raw -- -o allow_root clear

You can also decrypt the BitLocker image and save it separately as a reg-
ular filesystem image (only the specified volume is saved, not the partition
table or other partitions). This will take some time depending on the size of
the BitLocker image, as the entire image is decrypted and written to a new
image file on the disk. You’ll need to do some capacity planning, because
the two images, encrypted and decrypted, will take up space on the acquisi-
tion host. You can create a decrypted version of the volume as follows:

# dislocker-file -u -V bitlocker-image.raw bitlocker-image.clear

Enter the user password:

# ls -hs

total 15G

7.4G bitlocker-image.clear 7.4G bitlocker-image.raw
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The resulting decrypted image file is the same size as the original
because each BitLocker block was decrypted and the cleartext block writ-
ten to the new image. This command does not need root privileges.

Now you can mount the decrypted BitLocker image file and access it as
a partition using a mount command with a loop option:

# mkdir files

# mount -o loop,ro bitlocker-image.clear files

# ls files/

Penguins.jpg private/ System Volume Information/

The only command that is different for non-root use is mount:

$ sudo mount -o loop,ro,uid=holmes bitlocker-image.clear files

Because BitLocker is the default filesystem encryption on the dominant
OS platform, it’s worth providing a second example using a different soft-
ware package. The libbde package (written by Joachim Metz, the author of
ewflib) also provides libraries and tools to access BitLocker images.

The example shown next is slightly more complex than the previous
one, because it involves a notebook disk with a regular partition table (in
contrast to a USB thumb drive without a partition table). After calculating
the offsets from the mmls output, the bdeinfo tool is demonstrated to pro-
vide a compact overview of the BitLocker container.

Both dislocker and libbde can be given a byte offset for the start of
the BitLocker-encrypted volume. But this is unnecessary when working
with image files of volumes/partitions or devices without partitions. In
this example, an acquired image has a partition table, and the BitLocker-
encrypted volume offset (in bytes) must be calculated.

NOTE Always be sure about the units used for a command. Some tools use sector offsets, and
others use byte offsets. It is important to distinguish and convert between the two.

The next example demonstrates how to determine the byte offset. The
Sleuth Kit mmls command displays the partition table and the sector offsets
for each partition. The sector offset must be converted into a byte offset,
which can be used with the decryption tools:

# mmls image0.raw

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000002047 0000002048 Unallocated

02: 00:00 0000002048 0004098047 0004096000 NTFS (0x07)

03: 00:01 0004098048 0625140399 0621042352 NTFS (0x07)
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04: ----- 0625140400 0625142447 0000002048 Unallocated

# echo $((4098048*512))

2098200576

You can convert the sector offset shown by mmls to a byte offset by multi-
plying by the sector size. On the command line it is convenient to use Bash
math expansion. In this example, the sector offset is 4098048 and the sector
size is 512. Multiplying these gives a byte offset of 2098200576. You can use
this value for the bdeinfo command as follows:

# bdeinfo -o 2098200576 image0.raw

bdeinfo 20160119

BitLocker Drive Encryption information:

Encryption method: AES-CBC 128-bit with Diffuser

Volume identifier: 5f61cbf2-75b5-32e5-caef-537fce3cf412

Creation time: Jan 10, 2014 17:43:50.838892200 UTC

Description :Notebook System 15.01.2014

Number of key protectors: 2

Key protector 0:

Identifier: 3cd1fd6c-2ecb-2dc7-c150-839ce9e710b6

Type: TPM

Key protector 1:

Identifier: 837ef544-e1ca-65c1-a910-83acd492bc1a

Type: Recovery password

...

The bdemount command operates similarly to the dislocker command and
creates a virtual file that represents the decrypted image (the full key has
been shortened here):

# mkdir raw

# bdemount -o 2098200576 -r 630641-...-154814 image.raw raw

The file will appear in the ./raw directory, where you can analyze it
directly or mount it to a loop device for regular browsing. The mount
commands are the same as the previous BitLocker example, so they’re
not repeated here.

Apple FileVault
Apple’s filesystem encryption built into OS X is FileVault. It is also a
block-level encryption system, and several open source tools are available
to decrypt it. Two tools I’ll describe here are libfvde and VFDecrypt. (The
libfvde software package was written by Omar Choudary and Joachim Metz,
and you’ll find it at https://github.com/libyal/ libfvde/ .)
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Before you use the libfvde tools, you need to calculate the correct byte
offset of the FileVault-encrypted volume. The mmls command provides the
sector offset of the volume, which needs to be converted to bytes:

# mmls image.raw

GUID Partition Table (EFI)

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Safety Table

01: ----- 0000000000 0000000039 0000000040 Unallocated

02: Meta 0000000001 0000000001 0000000001 GPT Header

03: Meta 0000000002 0000000033 0000000032 Partition Table

04: 00 0000000040 0000409639 0000409600 EFI System Partition

05: 01 0000409640 0235708599 0235298960 HDD

06: 02 0235708600 0236978135 0001269536 Recovery HD

07: ----- 0236978136 0236978175 0000000040 Unallocated

# echo $((409640*512))

209735680

Multiplying the sector offset by the sector size using simple Bash math
expansion provides a byte offset of 209735680, which you can use for the
fvdeinfo and fvdemount tools.

The fvdeinfo tool provides an overview of the FileVault-encrypted
volume:

# fvdeinfo -o 209735680 image.raw

fvdeinfo 20160108

Core Storage information:

Physical volume:

Size: 120473067520 bytes

Encryption method: AES XTS

Logical volume:

Size: 120137519104 bytes

To decrypt the FileVault volume, you need to recover the EncryptedRoot
.plist.wipekey file and provide either a user password or recovery key. You can
find and extract the wipekey file using Sleuth Kit tools, as shown here:

# fls -r -o 235708600 image.raw | grep EncryptedRoot.plist.wipekey

+++++ r/r 1036: EncryptedRoot.plist.wipekey

# icat -o 235708600 image.raw 1036 > EncryptedRoot.plist.wipekey
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The recursive fls output of the Recovery HD partition uses the sec-
tor offset found with mmls. The output is grepped for the EncryptedRoot
.plist.wipekey file. After it’s found, the icat tool is used to extract it (using the
inode, which is 1036 in this example). Notice how a sector offset was used
with fls and icat, and not a byte offset.

The 24-character recovery key is used with the -r flag and the now-
recovered EncryptedRoot.plist.wipekey file. You can then use this key to create
a FUSE mount of a decrypted representation of the volume, as shown here
(the recovery key has been shortened):

# mkdir clear

# fvdemount -o 209735680 -r FKZV-...-H4PD -e EncryptedRoot.plist.wipekey image.raw

clear

fvdemount 20160108

# ls -l clear

total 0

-r--r--r-- 1 root root 120137519104 Jan 20 22:23 fvde1

...

You can provide a user password (-p) instead of a recovery key (-r), and
also using the EncryptedRoot.plist.wipekey file, you can access the resulting vol-
ume image with regular forensic tools. An example using Sleuthkit’s fsstat
on the decrypted volume is shown here:

# fsstat clear/fvde1

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: HFS+

File System Version: HFS+

Volume Name: HDD

...

You can also mount this decrypted volume as a regular filesystem for
browsing, as follows:

# mkdir files

# mount -o loop,ro clear/fvde1 files

# ls -l files

total 8212

drwxrwxr-x 1 root 80 50 Mar 2 2015 Applications/

drwxr-xr-x 1 root root 39 Jun 2 2015 bin/

drwxrwxr-t 1 root 80 2 Aug 25 2013 cores/

dr-xr-xr-x 1 root root 2 Aug 25 2013 dev/

...
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When the analysis work is complete, you’ll need to do some cleanup:

# umount files

# rmdir files

# fusermount -u clear

# rmdir clear

Note that the preceding examples were done with root privileges to
reduce complexity and make them easier to understand. Most of the com-
mands can be done as non-root with a few exceptions. Examples in which a
command is different when run by a nonprivileged user are shown here:

$ fvdemount -o 209735680 -r FKZV-...-H4PD -e EncryptedRoot.plist.wipekey image.raw

-X allow_root clear

$ sudo mount -o loop,ro clear/fvde1 files

$ sudo ls files/Users/somebody/private/directory

$ sudo umount files

The -X allow_root string in the fvdemount command allows root to access
the FUSE mounted directory. The sudo command is needed to mount and
unmount the hfsplus filesystem. When you’re browsing the filesystem, you
might also need the sudo command if filesystem permissions restrict access to
files or directories.

Several other notable open source tools exist for operating on File-
Vault images. The VFDecrypt tool also provides decryption of FileVault
images. Originally written by Ralf-Philipp Weinmann, David Hulton, and
Jacob Appelbaum, it is now maintained by Drake Allegrini. You’ll find it at
https://github.com/andyvand/VFDecrypt/ . It can decrypt an image into an
unencrypted volume image.

FileVault Cracking software was created by some of the same authors as
VFDecrypt; you’ll find it at http://openciphers.sourceforge.net/oc/vfcrack.php.

Linux LUKS
A number of file encryption systems are available in the open source world.
Some, like eCryptfs or encfs, are directory based. Others, like GPG and vari-
ous crypt tools, operate on individual files.

In this section, I mainly focus on the LUKS encryption system, but I’ll
also touch on plain dm-crypt and loop-AES. Using the cryptsetup tool, you
can set up all three. (You can also use the cryptsetup tool to manage True-
Crypt volumes, which I’ll describe in the following section.)

The examples that follow operate on a forensically acquired image with
a LUKS-encrypted filesystem. We’ll create a block device representing the
decrypted content of an encrypted filesystem and show methods to safely
mount the filesystem structure for browsing with regular tools. The three
goals are to get information about the encryption, create a device that can
be accessed with forensic tools, and safely mount the filesystem for regular
browsing.
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The first step requires the byte offset of the LUKS-encrypted partition.
The sector offset is shown by Sleuth Kit’s mmls of the image file. The byte
offset is the sector offset multiplied by the sector size, which is calculated
to be 1048576 using simple Bash math expansion:

# mmls luks.raw

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000002047 0000002048 Unallocated

02: 00:00 0000002048 0058626287 0058624240 Linux (0x83)

# echo $((2048*512))

1048576

You can use the byte offset to create a loop device of the encrypted parti-
tion by employing losetup as follows:

# losetup --read-only --find --show -o 1048576 luks.raw

/dev/loop0

The LUKS-encrypted partition is now accessible as a block device, which
the cryptsetup tool can use. You can find information about the encrypted
partition using cryptsetup’s luksDump command:

# cryptsetup luksDump /dev/loop0

LUKS header information for /dev/loop0

Version: 1

Cipher name: aes

Cipher mode: xts-plain64

Hash spec: sha1

Payload offset: 4096

MK bits: 256

MK digest: 8b 88 36 1e d1 a4 c9 04 0d 3f fd ba 0f be d8 4c 9b 96 fb 86

MK salt: 14 0f 0d fa 7b c3 a2 41 19 d4 6a e4 8a 16 fe 72

88 78 a2 18 7b 0f 74 8e 26 6d 94 23 3d 11 2e aa

MK iterations: 172000

UUID: 10dae7db-f992-4ce4-89cb-61d126223f05

Key Slot 0: ENABLED

Iterations: 680850

Salt: 8a 39 90 e1 f9 b6 59 e1 a6 73 30 ea 73 d6 98 5a

e1 d3 b6 94 a0 73 36 f7 00 68 a2 19 3f 09 62 b8
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Key material offset: 8

AF stripes: 4000

Key Slot 1: DISABLED

Key Slot 2: DISABLED

Key Slot 3: DISABLED

Key Slot 4: DISABLED

Key Slot 5: DISABLED

Key Slot 6: DISABLED

Key Slot 7: DISABLED

The key slots can be of interest from a forensics perspective. A LUKS
volume can have up to eight keys, meaning there are potentially eight differ-
ent passwords where you can attempt recovery.

With the password to the LUKS-encrypted filesystem, you can use crypt-
setup’s open command on the loop0 device to create a mapper device. This
device provides a decrypted representation of the encrypted image. The
mapper device is named clear in this example:

# cryptsetup -v --readonly open /dev/loop0 clear

Enter passphrase for /hyb/luks/luks.raw:

Key slot 0 unlocked.

Command successful.

The encrypted loop device is opened with the --readonly flag. The
verbose (-v) flag is also given to provide more information about the suc-
cess of the decryption key. After a successful key has been entered, a new
(decrypted) partition device will appear in the /dev/mapper directory and
can be operated on using standard forensic tools. For example, you can run
the Sleuth Kit fsstat tool:

# fsstat /dev/mapper/clear

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: Ext4

Volume Name: My Secrets

Volume ID: ba673056efcc5785f046654c00943860

...

You can also mount this partition device on the local machine for regu-
lar browsing:

# mkdir clear

# mount --read-only /dev/mapper/clear clear

# ls clear

lost+found/ the plan.txt
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Once the examination work is complete, the cleanup process can take
place. Each step is done in reverse:

# umount clear

# rmdir clear

# cryptsetup close clear

# losetup --detach /dev/loop0

Note that this is a simplified example of a single partition on a single
non-bootable data disk. A LUKS-encrypted disk with an bootable OS may
have an additional Logical Volume Manager (LVM) layer. Such disks
may have additional devices that appear in the /dev/mapper directory (root,
swap, and so on). You can access or mount each of these devices individu-
ally. During the cleanup process, you need to remove the partition devices
with dmsetup before closing the LVM device with cryptsetup.

For simplicity, the steps shown in this section were performed as a root
user. To run the examples as a non-root user, losetup, cryptsetup, mount, and
umount need sudo to execute, as do any tools that access the /dev/mapper parti-
tion device. Depending on the filesystem mounted, additional user options
may be useful (uid=holmes for example).

Images encrypted with plain dm-crypt and loop-AES can also be
decrypted using the cryptstetup tool. These follow a similar process as
the preceding LUKS example. The cryptsetup open command needs to
have either plain or loopaes specified using the --type flag. For example:

# cryptsetup -v --readonly open --type plain /dev/loop0 clear

Enter passphrase:

Command successful.

Using --type loopaes will also require a key file. Specifying --type luks is
also possible, but unnecessary, because it’s the default.

You’ll find more information about cryptsetup and LUKS at https://gitlab
.com/cryptsetup/cryptsetup/wikis/home/. And you’ll find a compatible Windows
implementation at https://github.com/t-d-k/ librecrypt/ .

TrueCrypt and VeraCrypt
After development of TrueCrypt was stopped, several forks emerged. The
dominating fork at the moment is VeraCrypt. It offers backward compatibil-
ity as well as new extensions.

The two examples of VeraCrypt I’ll provide are a normal encrypted
container and a hidden container. I used the standard command line ver-
sion of VeraCrypt in conjunction with familiar tools to make the containers
available for further analysis.
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The first example shows a simple encrypted TrueCrypt or VeraCrypt
container file. The --file-system=none flag is important because it prevents
VeraCrypt from mounting any filesystems:

$ veracrypt --mount-options=readonly --filesystem=none secrets.tc

Enter password for /exam/secrets.tc:

Enter PIM for /exam/secrets.tc:

Enter keyfile [none]:

Using the -l flag, you can list all the decrypted containers on the host
system by slot number. The slot number is an important identifier to use in
subsequent commands. In this example, the slot number is 1 and the famil-
iar /dev/mapper/* directory is used:

$ veracrypt -l

1: /exam/secrets.tc /dev/mapper/veracrypt1 -

After providing the correct credentials, you can request more informa-
tion about the container by specifying the slot number, as shown here:

$ veracrypt --volume-properties --slot=1

Slot: 1

Volume: /exam/secrets.tc

Virtual Device: /dev/mapper/veracrypt1

Mount Directory:

Size: 2.0 GB

Type: Normal

Read-Only: Yes

Hidden Volume Protected: No

Encryption Algorithm: AES

Primary Key Size: 256 bits

Secondary Key Size (XTS Mode): 256 bits

Block Size: 128 bits

Mode of Operation: XTS

PKCS-5 PRF: HMAC-SHA-512

Volume Format Version: 2

Embedded Backup Header: Yes

Two devices have been created. The device /dev/loop0 is encrypted as
a raw image (the same as the file on the filesystem). The device shown in
the volume properties, /dev/mapper/veracrypt1, is the decrypted volume,
which you can operate on directly using forensic tools. Here is an example
of Sleuth Kit examining the filesystem:

$ sudo fls /dev/mapper/veracrypt1

r/r * 4: photo.jpg

r/r 6: spy-photo.jpg
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v/v 66969091: $MBR

v/v 66969092: $FAT1

v/v 66969093: $FAT2

d/d 66969094: $OrphanFiles

You can also mount the mapper device on the local machine and browse
the filesystem with regular tools, like this:

$ mkdir clear

$ sudo mount -o ro,uid=holmes /dev/mapper/veracrypt1 clear

$ ls -l clear

total 360

-rwxr-x--- 1 holmes root 366592 Jan 21 23:41 spy-photo.jpg

Obviously, deleted files will not be visible in the user-mounted area; they
will only be visible when you use forensic tools via the /dev/mapper/veracrypt1
device.

Again, the cleanup process is the reverse of the setup process:

$ sudo umount clear

$ rmdir clear

$ veracrypt -d --slot=1

The second VeraCrypt example I’ll provide shows how to access a hid-
den volume. One feature of TrueCrypt and VeraCrypt is that it’s possible
to have two passwords that reveal two separate volumes. The use of both
passwords is compared in the two command outputs below.

Here, hidden.raw is a VeraCrypt drive containing a hidden volume.
Providing the first password produces a functioning standard TrueCrypt
container with files, claiming the full 1GB capacity of the drive and showing
Type: Normal:

$ ls -l

total 3098104

-rw-r----- 1 holmes holmes 1024966656 Jan 22 00:07 hidden.raw

...

$ veracrypt --mount-options=readonly --filesystem=none hidden.raw

Enter password for /exam/hidden.raw: [XXXXXXXXXXX]

...

$ veracrypt --volume-properties --slot=1

Slot: 1

Volume: /exam/hidden.raw

Virtual Device: /dev/mapper/veracrypt1

Mount Directory:
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Size: 977 MB

Type: Normal

Read-Only: Yes

...

$ sudo fls /dev/mapper/veracrypt1

...

r/r 20: fake secrets.pdf

...

If the volume is dismounted and then mounted again using the hidden
volume’s password, you’ll see a completely different set of files. The time
needed to mount the volume is also different. With the container in the
preceding example, 3.5 seconds was needed to unlock it, whereas unlocking
the hidden container in the same file needed 29 seconds. This is because
the standard volume decryption is attempted first (with all supported algo-
rithms), and upon failing, the decryption of a hidden volume is finally
tried. In the volume properties, the real size is now shown together with
Type: Hidden, as shown here:

$ veracrypt -d --slot=1

$ veracrypt --mount-options=readonly --filesystem=none hidden.raw

Enter password for /exam/hidden.raw: [YYYYYYYYYYY]

...

$ veracrypt --volume-properties --slot=1

Slot: 1

Volume: /exam/hidden.raw

Virtual Device: /dev/mapper/veracrypt1

Mount Directory:

Size: 499 MB

Type: Hidden

Read-Only: Yes

...

$ sudo fls /dev/mapper/veracrypt1

...

r/r 19: the real hidden secrets.pdf

...

The mapped device of a hidden volume produces a filesystem that you
can directly analyze with forensic tools.

TrueCrypt and VeraCrypt volumes can also be managed by newer ver-
sions of cryptsetup (version 1.6.7 and later), providing you with similar
mounting possibilities.

There are commercial and open source cracking tools for TrueCrypt/
VeraCrypt containers, but their use is beyond the scope of this book.
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Closing Thoughts
In this chapter, you learned to make acquired image files available as block
devices, create partition devices, and safely make them available for use with
regular filesystem tools. You also learned to use loop devices and became
more familiar with /dev/mapper devices. I showed tips for booting up suspect
images and demonstrated methods for accessing VM images from various
VM formats. Finally, you learned how to make a variety of encrypted file-
systems available for access in decrypted form.
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9
EXTRACTING SUBSETS OF

FORENSIC IMAGES

This chapter covers the selective extrac-
tion of data regions from an attached drive

or a forensically acquired image file. You’ll
learn to extract whole partitions, deleted or

partially overwritten partitions, inter-partition gaps,
and various volume and file slack areas. In addition,
you’ll see how to extract special areas such as Unified Extensible Firmware
Interface (UEFI) partitions, the sectors hidden by a DCO or HPA, and hiber-
nation partitions such as Intel Rapid Start Technology.

The final sections demonstrate extraction of data from allocated and
unallocated (possibly deleted) areas of the disk for further examination and
manual extraction of sectors using offsets. Let’s begin with determining the
partition layout of the drive.

Assess Partition Layout and Filesystems
Once you’ve attached a disk to your system or have acquired an image
file, you can perform an analysis of the disk partition scheme. This section
explains how to identify filesystems, partition tables, and commonly used
disk partition schemes.



The disk layout, or partition scheme, refers to the method used to orga-
nize the partitions (or slices) on a hard disk. The most common partition
schemes you’ll find in consumer computing are DOS, GPT, BSD, and APM
(Apple Partition Map, sometimes called mac). We’ll start with identifying the
partition scheme used on a disk.

Partition Scheme
Each partition or slice on a disk contains a separate filesystem or is used for
some other special purpose. A small portion of the disk (often just the first
sector) defines the layout of the disk by specifying the starting sector of each
partition, the partition size, the partition type, labels, and so on.

To determine the disk partition scheme, you can examine the initial
sectors of the disk for indicators. There is no official “Assigned Number”
designation for partition schemes (there are only half a dozen or so).
Don’t confuse this with DOS MBR partition types or IDs, which list up to
255 possible filesystems and other formats that could reside inside a DOS
partition. When you attach the subject disk to a workstation, the Linux ker-
nel will attempt to detect and interpret the partition scheme used, and it will
create the devices for each partition it finds.

You can use the Sleuth Kit mmstat command to identify the most com-
mon partition schemes. A list of supported partition schemes is shown here:

# mmstat -t list

Supported partition types:

dos (DOS Partition Table)

mac (MAC Partition Map)

bsd (BSD Disk Label)

sun (Sun Volume Table of Contents (Solaris))

gpt (GUID Partition Table (EFI))

Running mmstat will output the name of the scheme used:

# mmstat image.raw

dos

Alternatively, you can use the disktype tool to identify the partition
scheme. The disktype tool provides more verbose information and sup-
ports partitions, filesystems, and file and archive containers. The following
example shows output from disktype:

$ sudo disktype /dev/sda

--- /dev/sda

Block device, size 27.96 GiB (30016659456 bytes)

DOS/MBR partition map
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Partition 1: 27.95 GiB (30015610880 bytes, 58624240 sectors from 2048)

Type 0x83 (Linux)

You’ll find the original disktype software package at http://disktype
.sourceforge.net/. Also, you’ll find a fork and multiple patches for disktype
at https://github.com/kamwoods/disktype/ , https://github.com/Pardus-Linux/
Packages/tree/master/system/base/disktype/files/ , and https://github.com/
ericpaulbishop/gargoyle/ tree/master/package/disktype/patches/ .

A storage medium does not require a partition table or even a file-
system. Binary data can be written directly to the raw disk and accessed by
any program capable of understanding it (for example, some databases can
directly use raw disks). It’s possible to have disks without partition schemes.
In such cases, the filesystem starts at sector zero and continues to the end of
the disk (that is, the whole disk is the partition). This is common with some
older USB sticks and floppy disks. In such cases, partition analysis tools will
be ineffective and generally report a false or nonexistent partition table. If a
tool cannot detect a partition type, it’s worth checking whether a filesystem
was written directly to a raw device. In this example, mmstat finds nothing,
but fsstat does identify a filesystem:

# mmls /dev/sdj

Cannot determine partition type

# disktype /dev/sdj

--- /dev/sdj

Block device, size 1.406 MiB (1474560 bytes)

FAT12 file system (hints score 5 of 5)

Volume size 1.390 MiB (1457664 bytes, 2847 clusters of 512 bytes)

# mmstat /dev/sdj

Cannot determine partition type

# fsstat /dev/sdj

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: FAT12

...

Some encrypted volumes attempt to hide their existence or informa-
tion about the filesystem used, and they don’t use a recognizable partition
scheme.

Partition Tables
A partition scheme will have a disk block or set of blocks describing how it’s
organized. These are called partition tables (or disklabels for BSD systems),
and you can query them using various tools.
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You can use the Sleuth Kit mmls command to list the partition tables on
a disk or a forensically acquired image. In this example, mmls finds a regular
DOS partition scheme with a FAT32 partition:

# mmls image.raw

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000000062 0000000063 Unallocated

02: 00:00 0000000063 0005028344 0005028282 Win95 FAT32 (0x0b)

03: ----- 0005028345 0005033951 0000005607 Unallocated

The traditional DOS partition scheme is not able to handle disks larger
than 2TB. The GPT partition scheme was created to allow larger disks to be
organized with a greater number of partitions. GPT supports 128 partitions
compared to the 4 that DOS supports (not counting extended partitions). I
have written a paper on the forensic analysis of GPT disks and GUID parti-
tion tables; you can find it here: http://dx.doi.org/10.1016/j.diin.2009.07.001.

Most new PC systems are being shipped with GPT partitions today. An
example of a Windows 8 system’s partition table is shown here:

# mmls lenovo.raw

GUID Partition Table (EFI)

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Safety Table

01: ----- 0000000000 0000002047 0000002048 Unallocated

02: Meta 0000000001 0000000001 0000000001 GPT Header

03: Meta 0000000002 0000000033 0000000032 Partition Table

04: 00 0000002048 0002050047 0002048000

05: 01 0002050048 0002582527 0000532480 EFI system partition

06: 02 0002582528 0003606527 0001024000

07: 03 0003606528 0003868671 0000262144 Microsoft reserved partition

08: 04 0003868672 1902323711 1898455040 Basic data partition

09: 05 1902323712 1953523711 0051200000

Gary Kessler provides several partition table–parsing tools that provide
much greater detail. You’ll find these tools at http://www.garykessler.net/
software/index.html .
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To illustrate the level of detail Kessler’s parsing tools provide, here is
partial output from the partition table from the preceding example gener-
ated using the gptparser.pl tool:

$ gptparser.pl -i lenovo.raw

GPT Parser V1.4 beta - Gary C. Kessler (14 March 2013)

Source file = /exam/lenovo.raw

Input file length = 17408 bytes.

***** LBA 0: Protective/Legacy MBR *****

000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

016: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

...

=== Partition Table #5 (LBA 3, bytes 0:127) ===

000-015 Partition type GUID: 0xA2-A0-D0-EB-E5-B9-33-44-87-C0-68-B6-B7-26-99-C7

GUID: EBD0A0A2-B9E5-4433-87C0-68B6B72699C7

Type: Data partition (Linux *or* Windows)

016-031 Partition GUID: 0x64-12-FF-80-A7-F7-72-42-B6-46-25-33-6D-96-13-B5

GUID: 80FF1264-F7A7-4272-B646-25336D9613B5

032-039 First LBA: 0x00-08-3B-00-00-00-00-00 [3,868,672]

040-047 Last LBA: 0xFF-27-63-71-00-00-00-00 [1,902,323,711]

048-055 Partition attributes: 0x00-00-00-00-00-00-00-00

056-127 Partition name --

056: 42 00 61 00 73 00 69 00 63 00 20 00 64 00 61 00 B.a.s.i.c. .d.a.

072: 74 00 61 00 20 00 70 00 61 00 72 00 74 00 69 00 t.a. .p.a.r.t.i.

088: 74 00 69 00 6F 00 6E 00 00 00 00 00 00 00 00 00 t.i.o.n.........

104: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

120: 00 00 00 00 00 00 00 00 ........

Name: Basic data partition

...

The tool provides detailed information about each of the 128 GPT
partitions.

Filesystem Identification
The disktype tool, already presented in “Partition Scheme” on page 260,
allows you to identify partition schemes and filesystems within partitions.
The Sleuth Kit fsstat tool provides more comprehensive information about
a filesystem. The fsstat tool can operate directly on a partition device or on a
forensically acquired image if you specify the sector offset.
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In the previous examples, the sector offset of a Windows volume on the
lenovo.raw image file was 3868672. You can provide this sector offset to the
fssstat tool using the -o flag to analyze the filesystem metadata:

# fsstat -o 3868672 lenovo.raw

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: NTFS

Volume Serial Number: 4038B39F38B39300

OEM Name: NTFS

Volume Name: Windows8_OS

Version: Windows XP

METADATA INFORMATION

--------------------------------------------

First Cluster of MFT: 786432

...

If the drive is directly attached to your workstation, the Linux kernel will
attempt to parse the partition table and make the disk and partition devices
available in /dev, where you can access them directly.

However, if you’re examining a raw image file (.raw, .ewf, and so on),
there will be no device files for the image. The kernel will not interpret the
partition table and will not create the familiar partition devices (/dev/sda1,
/dev/sda2, and so on). You must specify an offset when accessing a partition
within an image file.

It’s better to rely on forensic tools to determine the partition details
rather than to trust the kernel. If a disk is corrupt or damaged, the kernel
might refuse to create the partition devices or create the wrong ones. The
examples you saw in this section always specified an offset rather than using
the kernel. In situations that involve malware, antiforensics, or other mali-
cious misdirection, using forensic tools instead of the kernel should take
precedence.

Partition Extraction
This section describes the extraction of individual partitions, inter-partition
gaps, and other areas of the disk like the DCO and HPA. Let’s begin with
some basic examples of extracting regular partitions.

Extract Individual Partitions
To access and extract individual partitions rather than the entire hard disk,
you can use several techniques. I’ll demonstrate a few examples of partition
extraction using a directly attached drive with a partition device, a partition
mapper device, and image files operated on by Sleuth Kit’s mmcat- and dd-
style tools.

264 Chapter 9



If a disk is accessible as an attached device, acquiring the partition is
similar to performing a full acquisition with a raw drive device but uses the
partition device instead. In the following example, the first partition of
/dev/sda is extracted to a file:

# dcfldd if=/dev/sda1 of=partition.raw

Extracting partitions requires some capacity planning, because the parti-
tion will consume disk space (possibly alongside the full drive image). If you
need only temporary access to a partition from an acquired image file, you
can attach it as a loop device and access it. The following steps demonstrate
this method.

First, use the mmls tool to identify the partition to be attached as a loop,
as follows:

# mmls lenovo.raw

GUID Partition Table (EFI)

Offset Sector: 0

Units are in 512-byte sectors

...

05: 01 0002050048 0002582527 0000532480 EFI system partition

...

Then use Bash math expansion to convert the sector offset and sector
length into a byte offset and byte length:

# echo $((2050048*512))

1049624576

# echo $((532480*512))

272629760

The calculated byte offset and byte length are then passed to losetup to
create a loop device, as follows:

# losetup --read-only --find --show --offset 1049624576 --sizelimit 272629760

lenovo.raw

/dev/loop2

You can access this resulting loop device using forensic tools in the same
way as you access the partition device of an attached disk. An example using
Sleuth Kit fls is shown here:

# fls /dev/loop2

r/r 3: SYSTEM_DRV (Volume Label Entry)

d/d 4: EFI

d/d 5: BOOT

d/d * 7: MSIa11f8.tmp

d/d * 8: _SI2DBB4.TMP
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d/d * 9: _190875_

...

If you need to extract a partition from an existing acquired image into a
separate file, you can use the dd tools or the Sleuth Kit mmcat command.

To extract a partition from an acquired image, the initial step is to iden-
tify the partition and sector details. In the following example, the partition
table from an acquired disk image shows the partition to be extracted:

# mmls image.raw

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

...

02: 00:00 0000000063 0078124094 0078124032 Linux (0x83)

...

Extracting a partition from an already acquired image file using dcfldd
or dd requires adding skip (dc3dd uses iskip) and count parameters, which
cause the command to jump (skip) ahead to the start of the partition and
acquire only the size of the partition:

$ dcfldd if=image.raw of=partition.raw bs=512 skip=63 count=78124032

In this command, the block size is set to 512 bytes to match the sector
size, the start of the partition is at sector 63, and 78124032 sectors should
be extracted. With a little additional calculation, you can improve the per-
formance of this command by changing the 512-byte block size to some-
thing larger (but don’t forget to adjust the skip and count parameters if you
do this).

With Sleuth Kit version 3.0 and later, you can use the mmcat tool to eas-
ily extract partitions. To recover the first partition in the previous example
using mmcat, you must specify the mmls slot number (not the DOS partition
number). In this case, the first partition is located in the mmls slot number
two and can be extracted as follows:

$ mmcat image.raw 2 > partition.raw

The mmcat tool simply pipes the output to stdout, so you must either
redirect it to a file or pipe it into a program.

Find and Extract Deleted Partitions
To exhaustively search for partially overwritten or deleted partitions of a
forensically acquired image, you can use several methods. Sleuth Kit pro-
vides a basic tool called sigfind to search for binary signature strings. Two
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useful tools for comprehensive partition searching are gpart and testdisk.
These tools implement filesystem recognition algorithms with more intelli-
gent guessing to identify lost partitions.

Running gpart without any options starts a scan for partitions, skipping
over areas identified as allocated. For example:

# gpart lenovo.raw

Begin scan...

Possible partition(Windows NT/W2K FS), size(1000mb), offset(1mb)

Possible partition(Windows NT/W2K FS), size(3mb), offset(1030mb)

Possible partition(Windows NT/W2K FS), size(3mb), offset(1494mb)

Possible partition(Windows NT/W2K FS), size(926980mb), offset(1889mb)

Possible partition(Windows NT/W2K FS), size(25000mb), offset(928869mb)

End scan.

...

Guessed primary partition table:

Primary partition(1)

type: 007(0x07)(OS/2 HPFS, NTFS, QNX or Advanced UNIX)

size: 1000mb #s(2048000) s(2048-2050047)

chs: (0/32/33)-(406/60/28)d (0/32/33)-(406/60/28)r

...

Adding a -f flag tells gpart to be exhaustive, looking for partitions
in every sector of the entire disk, even in areas where no partitions are
expected to be found. This will take much longer than the default gpart
scan without flags.

The testdisk tool (http://www.cgsecurity.org/ , written by Christophe
Grenier, who also wrote the photorec carving tool) provides several features
in addition to partition searching. Testdisk provides an interactive interface,
supports multiple disk layouts (DOS, GPT, BSD, and more), detects several
dozen partition types, generates activity logs, and can extract discovered
partitions to a file. You can use testdisk on devices, raw image files, and even
*.e01 files.

Use the testdisk tool with caution. This tool was designed for repairing
and recovering partitions, and it could easily modify evidence. Be sure to use
a write blocker before running this tool on attached subject disks.

Also included with the tool is a comprehensive user interactive menu
system to define options and activities. Shown here is a batch mode example
operating on an attached disk:

# testdisk /list /dev/sdb

TestDisk 7.0, Data Recovery Utility, April 2015

Christophe GRENIER <grenier@cgsecurity.org>

http://www.cgsecurity.org

Please wait...

Disk /dev/sdb - 15 GB / 14 GiB - CHS 14663 64 32

Sector size:512
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Model: SanDisk Ultra Fit, FW:1.00

Disk /dev/sdb - 15 GB / 14 GiB - CHS 14663 64 32

Partition Start End Size in sectors

1 P FAT32 LBA 0 1 1 14663 44 18 30031218 [NO NAME]

FAT32, blocksize=16384

You can perform a certain amount of manual analysis to search for
deleted partitions. If the partition table shows a large area of unallocated
space on a disk, check this area to determine whether a partition exists. In
the following example, mmls shows nearly 2.5GB (4863378 sectors) of empty
space at the end of a thumb drive:

# mmls /dev/sdb

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

000: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

001: ------- 0000000000 0000002047 0000002048 Unallocated

002: 000:000 0000002048 0025167871 0025165824 Win95 FAT32 (0x0c)

003: ------- 0025167872 0030031249 0004863378 Unallocated

This unallocated space could be a deleted partition. In this example,
running fsstat using the offset of the empty space discovers a valid filesystem:

# fsstat -o 25167872 /dev/sdb

FILE SYSTEM INFORMATION

--------------------------------------------

File System Type: Ext3

Volume Name:

Volume ID: 74a2f1b777ae52bc9748c3dbca837a80

Last Written at: 2016-05-21 15:42:54 (CEST)

Last Checked at: 2016-05-21 15:42:54 (CEST)

...

If you detect a valid filesystem, you can use the meta information about
it to determine the probable size of the partition. Knowing the size and start-
ing offset, you can extract the discovered partition or further analyze it. You
can extract it using dd-style tools or more easily with mmcat, like this:

# mmcat /dev/sdb 3 > deleted_partition.raw

Here, the mmcat output of the deleted partition discovered in mmls
slot 003 is sent to a file called deleted_partition.raw.
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Identify and Extract Inter-Partition Gaps
In some cases, there may be gaps between partitions that were created acci-
dentally or due to adjacent partitions meeting on cylinder or block bound-
aries. There could also be intentional gaps that were created for hiding data.
You can identify and recover these inter-partition gaps in the same way as
you extract a partition. Use mmls to determine the size and sector offset of
the gap, and then use dd or mmcat to extract it.

The mmls output of a partition table is shown here. The disk contains
two partitions, and there is a gap between them:

# mmls /dev/sdb

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

000: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

001: ------- 0000000000 0000002047 0000002048 Unallocated

002: 000:000 0000002048 0015626236 0015624189 Linux (0x83)

003: ------- 0015626237 0015626239 0000000003 Unallocated

004: 000:001 0015626240 0030031249 0014405010 Linux (0x83)

In this example, the first partition ends on sector 15626236, but the
adjacent partition starts on sector 15626240, indicating a three-sector gap
between them. Although you can extract this inter-partition gap using dd,
using mmcat is simpler:

# mmcat /dev/sdb 3 > gap.raw

# ls -l gap.raw

-rw-r----- 1 root root 1536 May 21 16:11 gap.raw

The resulting file is three sectors in size with the contents of the gap
between the two partitions. Larger gaps between partitions that contain
partially overwritten, corrupted, or identifiable filesystem fragments can be
analyzed with carving tools such as foremost.

The gap between the last partition and the end of a disk can also be of
interest. It may contain artifacts such as content from previously overwritten
partitions, backup copies of the GPT partition, or even malware attempting
to hide segments of binary code.

Extract HPA and DCO Sector Ranges
You have already learned how to identify and remove HPA and DCO restric-
tions. Once removed, these areas of the disk can be extracted for separate
analysis.
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In this example, hdparm shows that an HPA exists, and the mmls output
shows three slots, one of them being a Linux partition:

# hdparm -N /dev/sdh

/dev/sdh:

max sectors = 234441648/976773168, HPA is enabled

# mmls /dev/sdh

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000002047 0000002048 Unallocated

02: 00:00 0000002048 0234441647 0234439600 Linux (0x83)

After you successfully remove the HPA (and tell the kernel to rescan the
SCSI bus), running the same commands again produces different output, as
shown here:

# hdparm -N p976773168 /dev/sdh

/dev/sdh:

setting max visible sectors to 976773168 (permanent)

max sectors = 976773168/976773168, HPA is disabled

# mmls /dev/sdh

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000002047 0000002048 Unallocated

02: 00:00 0000002048 0234441647 0234439600 Linux (0x83)

03: ----- 0234441648 0976773167 0742331520 Unallocated

Now, hdparm indicates the HPA is disabled, and the mmls output shows
an additional line of output (slot 03) representing the sectors previously
hidden by the HPA.

Using the mmcat command with partition slot 03 will extract the data
from HPA, as follows:

# mmcat /dev/sdh 3 > hpa.raw

This example uses a live disk attached to an acquisition host. When an
image file is acquired from a disk with the HPA removed, mmls will see this
hidden region.
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Extracting sectors hidden by a DCO is identical to the method shown
here with the HPA. First use hdparm to expose the DCO-protected sectors,
and then extract them using dd or mmcat. This procedure does not need
to be repeated with additional examples specifically demonstrating sectors
from a DCO.

Other Piecewise Data Extraction
In this final section, I describe various additional examples of piecewise data
extraction. The contents of this section (in fact the contents of most of this
chapter) blur together slightly with forensic filesystem analysis, which is not
the intended scope of the book. For this reason, the examples are slightly
less descriptive.

Extract Filesystem Slack Space
Slack space is a traditional digital forensics concept referring to allocated but
unused data at the end of disk sectors, filesystem blocks, or filesystems (RAM
slack, file slack, and partition slack, respectively).

To visualize slack space, imagine this book as a hard disk, where para-
graphs are sectors, chapters are files, and body of the text is the partition.
Notice that paragraphs don’t finish exactly at the end of a line, chapters
don’t finish exactly at the end of a page, and the end of the book might have
a couple of additional blank pages. These empty spaces are the book’s “slack
space.” With storage media, if the OS or physical drive has not explicitly writ-
ten zeros to these areas, they might still contain data from previously written
files.

Historically, extracting and analyzing slack space has been useful in
forensic investigations. However, the value of slack space is beginning to
decrease due to several factors:

• SSDs are using TRIM commands to zero unallocated blocks.

• Modern OSes are writing back zeros to unused portions of sectors and
blocks.

• Disks with native 4K sectors align with filesystem block sizes.

• OSes create partitions and filesystems aligned to block boundaries.

As part of the forensic process, acquiring and analyzing potential slack
areas are still diligent steps to complete.

To extract all slack space on a given image, you can use the Sleuth Kit
blkls command. Slack space is filesystem specific, so you must extract slack
space on each filesystem separately (you can’t just use the entire raw disk).
In this example, the filesystem offsets of the acquired image are found with
mmls, and the slack space of each one is extracted:

# mmls lenovo.raw

GUID Partition Table (EFI)

Offset Sector: 0
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Units are in 512-byte sectors

Slot Start End Length Description

04: 00 0000002048 0002050047 0002048000

05: 01 0002050048 0002582527 0000532480 EFI system partition

06: 02 0002582528 0003606527 0001024000

...

08: 04 0003868672 1902323711 1898455040 Basic data partition

...

# blkls -o 2048 -s lenovo.raw > slack.04

# blkls -o 2050048 -s lenovo.raw > slack.05

# blkls -o 2582528 -s lenovo.raw > slack.06

# blkls -o 3868672 -s lenovo.raw > slack.08

The slack space for each recognized filesystem is saved to a file. The
blkls command’s -s flag extracts all slack space (and only slack space).
It is important to understand that slack space does not refer to unallo-
cated blocks or sectors. Slack space is the unused area found within allo-
cated blocks and sectors of a filesystem.

Extract Filesystem Unallocated Blocks
This next example will gather all unallocated blocks from filesystems on an
acquired image. Unallocated blocks are filesystem specific, so you need to
perform this operation separately on each recognized filesystem.

Here, the mmls command is again used to determine the offsets of each
filesystem, and the blkls command is used to extract unallocated blocks:

# blkls -o 2048 lenovo.raw > unalloc.04

# blkls -o 2050048 lenovo.raw > unalloc.05

# blkls -o 2582528 lenovo.raw > unalloc.06

# blkls -o 3868672 lenovo.raw > unalloc.08

The correct blkls flag for extracting unallocated blocks is -A, but
because it’s the default command behavior, you can omit it.

You can also perform the inverse action of extracting all (and only) allo-
cated blocks using the blkls -a command.

Manual Extraction Using Offsets
In certain situations, you might use a hex editor to browse, search, or man-
ually analyze the contents of a disk or acquired disk image. The hex editor
may provide a byte offset, a sector offset, or both.

This example uses the console-based hexedit tool to analyze a disk:

# hexedit -s /dev/sda
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The hexedit tool allows you to directly edit block device files and edit
very large image files (no loading in memory or temp files), and it provides a
sector mode (entire sectors and sector offsets are shown).

In the following example, the sector offset is 2048 (the start of an NTFS
partition), the byte offset is 0x100181, and the entire sector is shown (note:
hexedit assumes 512-byte sectors):

00100000 EB 52 90 4E 54 46 53 20 20 20 20 00 02 08 00 00 .R.NTFS .....

00100010 00 00 00 00 00 F8 00 00 3F 00 FF 00 00 08 00 00 ........?.......

00100020 00 00 00 00 80 00 80 00 01 48 00 00 00 00 00 00 .........H......

00100030 04 00 00 00 00 00 00 00 80 04 00 00 00 00 00 00 ................

00100040 F6 00 00 00 01 00 00 00 22 90 FD 7E 2E 42 12 09 ........"..~.B..

00100050 00 00 00 00 FA 33 C0 8E D0 BC 00 7C FB 68 C0 07 .....3.....|.h..

00100060 1F 1E 68 66 00 CB 88 16 0E 00 66 81 3E 03 00 4E ..hf......f.>..N

00100070 54 46 53 75 15 B4 41 BB AA 55 CD 13 72 0C 81 FB TFSu..A..U..r...

00100080 55 AA 75 06 F7 C1 01 00 75 03 E9 D2 00 1E 83 EC U.u.....u.......

00100090 18 68 1A 00 B4 48 8A 16 0E 00 8B F4 16 1F CD 13 .h...H..........

001000A0 9F 83 C4 18 9E 58 1F 72 E1 3B 06 0B 00 75 DB A3 .....X.r.;...u..

001000B0 0F 00 C1 2E 0F 00 04 1E 5A 33 DB B9 00 20 2B C8 ........Z3... +.

001000C0 66 FF 06 11 00 03 16 0F 00 8E C2 FF 06 16 00 E8 f...............

001000D0 40 00 2B C8 77 EF B8 00 BB CD 1A 66 23 C0 75 2D @.+.w......f#.u-

001000E0 66 81 FB 54 43 50 41 75 24 81 F9 02 01 72 1E 16 f..TCPAu$....r..

001000F0 68 07 BB 16 68 70 0E 16 68 09 00 66 53 66 53 66 h...hp..h..fSfSf

00100100 55 16 16 16 68 B8 01 66 61 0E 07 CD 1A E9 6A 01 U...h..fa.....j.

00100110 90 90 66 60 1E 06 66 A1 11 00 66 03 06 1C 00 1E ..f`..f...f.....

00100120 66 68 00 00 00 00 66 50 06 53 68 01 00 68 10 00 fh....fP.Sh..h..

00100130 B4 42 8A 16 0E 00 16 1F 8B F4 CD 13 66 59 5B 5A .B..........fY[Z

00100140 66 59 66 59 1F 0F 82 16 00 66 FF 06 11 00 03 16 fYfY.....f......

00100150 0F 00 8E C2 FF 0E 16 00 75 BC 07 1F 66 61 C3 A0 ........u...fa..

00100160 F8 01 E8 08 00 A0 FB 01 E8 02 00 EB FE B4 01 8B ................

00100170 F0 AC 3C 00 74 09 B4 0E BB 07 00 CD 10 EB F2 C3 ..<.t...........

00100180 0D 0A 41 20 64 69 73 6B 20 72 65 61 64 20 65 72 ..A disk read er

00100190 72 6F 72 20 6F 63 63 75 72 72 65 64 00 0D 0A 42 ror occurred...B

001001A0 4F 4F 54 4D 47 52 20 69 73 20 6D 69 73 73 69 6E OOTMGR is missin

001001B0 67 00 0D 0A 42 4F 4F 54 4D 47 52 20 69 73 20 63 g...BOOTMGR is c

001001C0 6F 6D 70 72 65 73 73 65 64 00 0D 0A 50 72 65 73 ompressed...Pres

001001D0 73 20 43 74 72 6C 2B 41 6C 74 2B 44 65 6C 20 74 s Ctrl+Alt+Del t

001001E0 6F 20 72 65 73 74 61 72 74 0D 0A 00 00 00 00 00 o restart.......

001001F0 00 00 00 00 00 00 00 00 80 9D B2 CA 00 00 55 AA ..............U.

--- sda --0x100181/0x6FD21E000--sector 2048---------------------------

From the byte or sector offset, you can construct dd commands to extract
what was found within the hex editor.
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The following example uses a sector size of 512, a sector offset, and
a sector count to extract a range of data (four 512-byte sectors) from an
image:

# dd if=/dev/sda of=sectors.raw skip=2048 bs=512 count=4

The next example extracts the same range of data using byte offsets.
The skip command uses Bash math expansion to convert hexadecimal into
decimal, which is needed for dd; the block size is 1 byte; and the count is the
number of bytes required.

# dd if=/dev/sda of=bytes.raw skip=$((0x100000)) bs=1 count=2048

The two previous examples extract the same block (four sectors or
2048 bytes) of data. Note that when extracting regions of a disk, it is sensible
to ensure you have sector- or block-aligned offsets (that is, multiples of the
sector size or block size).

In cases in which you need to extract a range of filesystem blocks, use
the Sleuth Kit blkcat command. The following example extracts 25 blocks
from a filesystem starting at block 100:

# blkcat /dev/sda1 100 25 > blocks.raw

The filesystem block size should be detected by the tool.
The examples in this final section showed how you can access images;

use offsets; and extract a range of bytes, sectors, or blocks. You can also use
other Sleuth Kit commands to map sectors to blocks and map blocks to
inodes and filenames. These tasks are filesystem specific and move into the
realm of filesystem forensic analysis.

Closing Thoughts
In this final chapter, you learned how to extract subsets of drives and foren-
sic images. The chapter focused on extracting various portions of an image
such as sectors hidden by an HPA or DCO, deleted partitions, and inter-
partition gaps. You also saw the manual extraction of specified sectors and
blocks, including unallocated blocks and slack space. This chapter bordered
on forensic analysis, as it looked at identifying partition schemes, under-
standing partition tables, and identifying filesystems. Since this book is about
forensic acquisition and not forensic analysis, it is a fitting final chapter.
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CLOSING REMARKS

I hope you have found this book a useful educational
tool, and I hope that going forward you’ll continue
to find it a helpful reference. Whether you’re a pro-
fessional forensics practitioner or a student learning
about forensics, this book aims to demonstrate funda-
mental concepts, show how things work, and provide
a set of practical tool examples with the Linux com-
mand line.

Many new forensic books focus on application-layer analysis, cloud
forensics, mobile forensics, big data analytics, and other new and exciting
areas. Traditional digital forensic acquisition and evidence preservation of
storage media might seem less exciting by comparison, but it is still a funda-
mental function that new forensic investigators need to learn.

The community must not be complacent when it comes to advance-
ments in traditional storage media forensics. A lot of change continues to
happen in this area, and we as a community need to keep up with the latest
developments. This book is intended to be a resource that includes coverage
of the latest changes in traditional storage media forensics.



Clearly, not all of the examples, tools, and methods shown here are
suitable for every professional forensic lab setting. Many open source foren-
sic tools are a small software development effort undertaken by volunteers
(sometimes just a single developer), and some are even abandoned software
projects. These cannot easily compete with the products of larger commer-
cial software companies. Nonetheless, even tools that are in experimental
stages of development will provide you with an understanding of the prob-
lems and how the solutions might look. In addition, I encourage you to
explore other tools and methods that might not be covered in this book—
open source tools are continuously and rapidly changing, and for every tool
and method shown here, there are alternatives that could achieve the same
result.

As a final word of encouragement to readers: Learn!
I was drawn into digital forensics and investigation because it’s a field

where you’re always learning. The investigative process is learning—learning
about how events in an incident transpired. The digital forensics process
is learning—learning how technologies are interacting with each other
and reconstructing a sequence of technological activity. Digital forensics
research and development is learning—learning to develop new tools and
methods to overcome challenges and to understand complex technology to
advance the body of knowledge.

Digital forensics is a fascinating field. Enjoy it!
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